TY - THES A1 - Vacogne, Charlotte D. T1 - New synthetic routes towards well-defined polypeptides, morphologies and hydrogels T1 - Neue Syntheserouten zu wohldefinierten Polypeptiden, Morphologien und Hydrogelen N2 - Proteins are natural polypeptides produced by cells; they can be found in both animals and plants, and possess a variety of functions. One of these functions is to provide structural support to the surrounding cells and tissues. For example, collagen (which is found in skin, cartilage, tendons and bones) and keratin (which is found in hair and nails) are structural proteins. When a tissue is damaged, however, the supporting matrix formed by structural proteins cannot always spontaneously regenerate. Tailor-made synthetic polypeptides can be used to help heal and restore tissue formation. Synthetic polypeptides are typically synthesized by the so-called ring opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCA). Such synthetic polypeptides are generally non-sequence-controlled and thus less complex than proteins. As such, synthetic polypeptides are rarely as efficient as proteins in their ability to self-assemble and form hierarchical or structural supramolecular assemblies in water, and thus, often require rational designing. In this doctoral work, two types of amino acids, γ-benzyl-L/D-glutamate (BLG / BDG) and allylglycine (AG), were selected to synthesize a series of (co)polypeptides of different compositions and molar masses. A new and versatile synthetic route to prepare polypeptides was developed, and its mechanism and kinetics were investigated. The polypeptide properties were thoroughly studied and new materials were developed from them. In particular, these polypeptides were able to aggregate (or self-assemble) in solution into microscopic fibres, very similar to those formed by collagen. By doing so, they formed robust physical networks and organogels which could be processed into high water-content, pH-responsive hydrogels. Particles with highly regular and chiral spiral morphologies were also obtained by emulsifying these polypeptides. Such polypeptides and the materials derived from them are, therefore, promising candidates for biomedical applications. N2 - Proteine, auch Polypeptide genannt, sind große Biomoleküle, die aus kleineren Aminosäuren bestehen. Diese sind zu langen Ketten miteinander verbunden, wie die Perlen auf einer Perlenkette. Sie werden in Zellen produziert, können in Tieren und Pflanzen gefunden werden und haben vielfältige Funktionen. Eine dieser Funktionen ist es, die umgebenen Zellen und Gewebe wie ein Gerüst zu stützen. Kollagen (welches in Haut, Knorpel, Sehnen und Knochen zu finden ist) und Keratin (welches in Haaren und Nägeln vorkommt) gehören zu diesen Strukturproteinen. Jedoch wenn ein Gewebe beschädigt ist, beispielsweise als Folge eines Unfalls, kann sich das Grundgerüst aus diesen Strukturproteinen manchmal nicht mehr selbst regenerieren. Maßgefertigte synthetische Polypeptide, können dafür verwendet werden, die Heilung und Wiederherstellung des Gewebes zu Unterstützen. Diese Polypeptide werden mit einer Reihe an chemischen Reaktionen synthetisiert, welche hauptsächlich darauf abzielen Aminosäuren miteinander zu verknüpfen. Synthetische Polypeptide sind weniger Komplex als die von Zellen hergestellten, natürlichen Polypeptide (Proteine). Während in den natürlichen Polypeptiden die Aminosäuren in einer von der DNA definierten Reihenfolge, welche als Sequenz bezeichnet wird, angeordnet sind, sind sie in synthetischen Polypeptiden zumeist zufällig verteilt. Die Konsequenz daraus ist, dass synthetische Polypeptide nicht immer so Leistungsfähig sind wie natürliche Proteine und ein durchdachtes Design benötigen. Zwei Aminosäuren wurden in dieser Dissertation sorgfältig ausgewählt und verwendet um eine Serie an Polypeptiden mit unterschiedlicher Zusammensetzung und Länge zu synthetisieren. Ein neuer und vielseitiger Syntheseweg wurde ebenfalls entwickelt und der zugrundeliegende Mechanismus untersucht. Die Polypeptide wurden gründlich analysiert und neue Materialien wurden aus ihnen entwickelt. In Lösung gebracht formten diese Fasern, ähnlich denen von Kollagen, welche sich wiederum zu robusten Netzwerken anordneten. Aus diesen Netzwerken ließen sich Hydrogele herstellen, welche in der Lage waren große Mengen an Wasser aufzunehmen. Diese Hydrogele wiederum stellen vielversprechende Kandidaten für biomedizinische Anwendungen dar. KW - polymer KW - chemistry KW - biomaterial KW - polymerization KW - kinetics KW - polypeptide KW - colloid KW - gelation KW - hydrogel KW - organogel KW - secondary structure KW - physical KW - NCA KW - N-carboxyanhydride KW - Polymer KW - Chemie KW - Biomaterial KW - Polymerisation KW - Kinetik KW - Polypeptid KW - Kolloid KW - Gelieren KW - Hydrogel KW - Organogel KW - Sekundärstruktur KW - physikalisch KW - NCA KW - N-carboxyanhydrid Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-396366 ER - TY - THES A1 - Ihlenburg, Ramona T1 - Sulfobetainhydrogele mit biomedizinischem Anwendungspotential und deren Netzwerkcharakterisierung im Gleichgewichtsquellzustand N2 - In dieser Dissertation konnten erfolgreich mechanisch stabile Hydrogele über eine freie radikalische Polymerisation (FRP) in Wasser synthetisiert werden. Dabei diente vor allem das Sulfobetain SPE als Monomer. Dieses wurde mit dem über eine nukleophile Substitution erster bzw. zweiter Ordnung hergestellten Vernetzer TMBEMPA/Br umgesetzt. Die entstandenen Netzwerke wurden im Gleichgewichtsquellzustand im Wesentlichen mittels Niederfeld-Kernresonanzspektroskopie, Röntgenkleinwinkelstreuung (SAXS), Rasterelektronenmikroskopie mit Tieftemperaturtechnik (Kryo-REM), dynamisch-mechanische Analyse (DMA), Rheologie, thermogravimetrische Analyse (TGA) und dynamische Differenzkalorimetrie (DSC) analysiert. Das hierarchisch aufgebaute Netzwerk wurde anschließend für die matrixgesteuerten Mineralisation von Calciumphosphat und –carbonat genutzt. Über das alternierende Eintauchverfahren (engl. „alternate soaking method“) und der Variation von Mineralisationsparametern, wie pH-Wert, Konzentration c und Temperatur T konnten dann verschiedene Modifikationen des Calciumphosphats generiert werden. Das entstandene Hybridmaterial wurde qualitativ mittels Röntgenpulverdiffraktometrie (XRD), abgeschwächte Totalreflexion–fouriertransformierte Infrarot Spektroskopie (ATR-FTIR), Raman-Spektroskopie, Rasterelektronenmikroskopie (REM) mit energiedispersiver Röntgenspektroskopie (EDXS) und optischer Mikroskopie (OM) als auch quantitative mittels Gravimetrie und TGA analysiert. Für die potentielle Verwendung in der Medizintechnik, z.B. als Implantatmaterial, ist die grundlegende Einschätzung der Wechselwirkung zwischen Hydrogel bzw. Hybridmaterial und verschiedener Zelltypen unerlässlich. Dazu wurden verschiedene Zelltypen, wie Einzeller, Bakterien und adulte Stammzellen verwendet. Die Wechselwirkung mit Peptidsequenzen von Phagen komplettiert das biologische Unterkapitel. Hydrogele sind mannigfaltig einsetzbar. Diese Arbeit fasst daher weitere Projektperspektiven, auch außerhalb des biomedizinischem Anwendungsspektrums, auf. So konnten erste Ansätze zur serienmäßige bzw. maßgeschneiderte Produktion über das „Inkjet“ Verfahren erreicht werden. Um dies ermöglichen zu können wurden erfolgreich weitere Synthesestrategien, wie die Photopolymerisation und die redoxinitiierte Polymerisation, ausgenutzt. Auch die Eignung als Filtermaterial oder Superabsorber wurde analysiert. N2 - In this current thesis, mechanically stable hydrogels were successfully synthesized via free radical polymerization (FRP) in water. In particular, the sulfobetaine SPE served as a monomer. This was reacted with the crosslinker TMBEMPA/Br prepared via first- and second-order nucleophilic substitution, respectively. The resulting networks were analyzed in the equilibrium swelling state mainly by low-field nuclear magnetic resonance spectroscopy, small-angle X-ray scattering (SAXS), scanning electron microscopy with cryogenic technique (cryo-REM), dynamic mechanical analysis (DMA), rheology, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The hierarchical network was then used for matrix-controlled mineralization of calcium phosphate and carbonate. Using the alternate soaking method and varying mineralization parameters such as pH, concentration c and temperature T, different modifications of calcium phosphate could be generated. The resulting hybrid material was analyzed qualitatively by X-ray powder diffraction (XRD), attenuated total reflection Fourier transformed infrared spectroscopy (ATR-FTIR), Raman spectroscopy, scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDXS) and optical microscopy (OM) as well as quantitatively by gravimetry and TGA. For the potential use in medical technology, e.g. as implant material, the basic assessment of the interaction between hydrogel or hybrid material and different cell types is essential. For this purpose, different cell types, such as amoeba, bacteria and adult stem cells, were used. The interaction with peptide sequences of phages completes the biological subchapter. Hydrogels can be used in many different ways. This thesis therefore includes further project perspectives, also outside the biomedical application spectrum. Thus, first approaches to serial or customized production via the "inkjet" process could be achieved. To make this possible, other synthesis strategies such as photopolymerization and redox-initiated polymerization were successfully exploited. The suitability as filter material or superabsorbent was also analyzed. KW - Hydrogel KW - Calciumphosphat KW - Mineralisation KW - hydrogel KW - calcium phosphate KW - mineralization Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-607093 ER - TY - THES A1 - Couturier, Jean-Philippe T1 - New inverse opal hydrogels as platform for detecting macromolecules T1 - Neue inverse Opal-Hydrogele als Plattform für die Detektion von Makromolekülen N2 - In this thesis, a route to temperature-, pH-, solvent-, 1,2-diol-, and protein-responsive sensors made of biocompatible and low-fouling materials is established. These sensor devices are based on the sensitivemodulation of the visual band gap of a photonic crystal (PhC), which is induced by the selective binding of analytes, triggering a volume phase transition. The PhCs introduced by this work show a high sensitivity not only for small biomolecules, but also for large analytes, such as glycopolymers or proteins. This enables the PhC to act as a sensor that detects analytes without the need of complex equipment. Due to their periodical dielectric structure, PhCs prevent the propagation of specific wavelengths. A change of the periodicity parameters is thus indicated by a change in the reflected wavelengths. In the case explored, the PhC sensors are implemented as periodically structured responsive hydrogels in formof an inverse opal. The stimuli-sensitive inverse opal hydrogels (IOHs) were prepared using a sacrificial opal template of monodispersed silica particles. First, monodisperse silica particles were assembled with a hexagonally packed structure via vertical deposition onto glass slides. The obtained silica crystals, also named colloidal crystals (CCs), exhibit structural color. Subsequently, the CCs templates were embedded in polymer matrix with low-fouling properties. The polymer matrices were composed of oligo(ethylene glycol) methacrylate derivatives (OEGMAs) that render the hydrogels thermoresponsive. Finally, the silica particles were etched, to produce highly porous hydrogel replicas of the CC. Importantly, the inner structure and thus the ability for light diffraction of the IOHs formed was maintained. The IOH membrane was shown to have interconnected pores with a diameter as well as interconnections between the pores of several hundred nanometers. This enables not only the detection of small analytes, but also, the detection of even large analytes that can diffuse into the nanostructured IOH membrane. Various recognition unit – analyte model systems, such as benzoboroxole – 1,2-diols, biotin – avidin and mannose – concanavalin A, were studied by incorporating functional comonomers of benzoboroxole, biotin and mannose into the copolymers. The incorporated recognition units specifically bind to certain low and highmolar mass biomolecules, namely to certain saccharides, catechols, glycopolymers or proteins. Their specific binding strongly changes the overall hydrophilicity, thus modulating the swelling of the IOH matrices, and in consequence, drastically changes their internal periodicity. This swelling is amplified by the thermoresponsive properties of the polymer matrix. The shift of the interference band gap due to the specific molecular recognition is easily visible by the naked eye (up to 150 nm shifts). Moreover, preliminary trial were attempted to detect even larger entities. Therefore anti-bodies were immobilized on hydrogel platforms via polymer-analogous esterification. These platforms incorporate comonomers made of tri(ethylene glycol) methacrylate end-functionalized with a carboxylic acid. In these model systems, the bacteria analytes are too big to penetrate into the IOH membranes, but can only interact with their surfaces. The selected model bacteria, as Escherichia coli, show a specific affinity to anti-body-functionalized hydrogels. Surprisingly in the case functionalized IOHs, this study produced weak color shifts, possibly opening a path to detect directly living organism, which will need further investigations. N2 - Periodisch strukturierte, funktionelle responsive Hydrogele wurden in Form von inversen Opalen (IOH) aufgebaut und als Basiselement für Temperatur-, pH-, lösungsmittel-, 1,2-diol- oder protein-sensitive Sensorsysteme entwickelt. Dazu wurden aus biokompatiblen Bausteinen funktionelle photonische Kristalle aufgebaut, deren optische Bandlücke durch selektive Bindung eines Analyten moduliert wird, indem dieser einen Volumen-Phasenübergang induziert.Mittels solcher responsiver photonische Kristalle ist es möglich, Analyte ohne aufwendige Geräte durch Farbänderung einfach zu detektieren. Die entwickelten Systeme zeigen nicht nur eine hohe Empfindlichkeit gegenüber kleinen Biomolekülen, sondern auch gegenüber größeren Analyten wie z.B. Glycopolymeren und Proteinen, was bisher nicht bekannt war. Die stimuli-sensitiven inversen Opal Hydrogele (IOHs) wurden in mehreren Stufen hergestellt. Als erstes wurden dafür kolloidale Kristalle mit hexagonal gepackten Strukturen aus monodispersen SiO2-Partikeln auf Glasträgern auf ebaut (“Opal”). Die Opale mit charakteristischen Strukturfarben wurden anschließend in eine polymere Hydrogelmatrix eingebettet. Diese wurde aus Oligo(ethylenglycol)methacrylaten (OEGMAs) hergestellt, so dass die Hydrogele sowohl thermosensitives als auch “lowfouling” Verhalten zeigen. Im letzten Schritt wurden die SiO2-Partikel entfernt und so eine hochporöse Hydrogel-Replika der Opale erhalten unter Erhalt deren innerer Struktur und Strukturfarbe. Die miteinander verbunden Poren der IOHMembran besitzen einen Durchmesser von einigen hundert Nanometern. Dies ermöglichte nicht nur die Detektion von kleinen Analyten, sondern auch die Detektion von deutlich größeren, makromolekularen Analyten, die ebenfalls in die Nanostrukturen der IOH Membran diffundieren können. Modellsysteme bestanden immer aus einer Erkennungsgruppe und einem Analyten, beispielsweise aus Benzoboroxol – 1,2-Diol, Biotin – Avidin und Mannose – Lectin (Concanavalin A). Für dieseModellsysteme wurden OEGMAs mitMonomeren copolymerisiert, die mit Benzoboroxol, Biotin bzw.Mannose funktionalisiert waren. Die so im Polymer eingebauten Erkennungsgruppen binden spezifisch an bestimmte Biomoleküle unterschiedlicherMolmassen, wie z.B. niedermolekulare Saccharide oder Catechin, als auch hochmolekulare Glycopolymere oder Proteine. Der spezifische Bindungsvorgang moduliert die Gesamthydrophilie, so dass sich der Quellgrad der IOH-Matrix ändert. Dies wiederrumverändert die innere Periodizität und damit die Strukturfarbe. Dabei wird der Quelleffekt durch die Thermosensitivität der Hydrogele massiv verstärkt. Eine spezifischeMolekülanbindung lässt sich so optisch, z.T. sogar mit dem Auge, erkennen aufgrund der deutlichen Verschiebung der Strukturfarbe um bis zu 150 nm. Des Weiteren wurden auch erste Versuche zur Detektion von noch größeren Analyten unternommen. Dafür wurden Antiköper durch nachträgliche Modifizierung der Polymerseitenketten auf den Hydrogeloberflächen immobilisiert. Mit diesem Modellsystem konnten unterschiedliche Bakterienarten durch Antikörper spezifisch gebunden werden. Die verwendeten Bakterienarten sind zwar zu groß, um in die Membran des IOH Systems einzudringen, können jedoch mit der IOH-Oberfläche wechselwirken. Insbesondere dasModellsystem mit Escherichia coli zeigte eine starke, spezifische Affinität zu dem Antikörper-funktionalisierten IOH. Überraschenderweise zeigte sich bei den Versuchen in Gegenwart des Analyten eine kleine Farbänderung der funktionalisierten IOH. Damit eröffnet sich u.U. dieMöglichkeit, mit solchen responsiven photonischen Kristallen auch lebende Organismen spezifisch und einfach zu detektieren, was in weiterführenden Arbeiten zu klären sein wird. KW - inverse opal KW - hydrogel KW - responsive polymer KW - inverse Opale KW - Hydrogel KW - schaltbare Polymere Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-98412 ER - TY - THES A1 - Buller, Jens T1 - Entwicklung neuer stimuli-sensitiver Hydrogelfilme als Plattform für die Biosensorik T1 - Development of new stimuli-sensitive hydrogel films designed as platform for biosensors N2 - Diese Arbeit befasst sich mit der Synthese und der Charakterisierung von thermoresponsiven Polymeren und ihrer Immobilisierung auf festen Oberflächen als nanoskalige dünne Schichten. Dabei wurden thermoresponsive Polymere vom Typ der unteren kritischen Entmischungstemperatur (engl.: lower critical solution temperature, LCST) verwendet. Sie sind bei niedrigeren Temperaturen im Lösungsmittel gut und nach Erwärmen oberhalb einer bestimmten kritischen Temperatur nicht mehr löslich; d. h. sie weisen bei einer bestimmten Temperatur einen Phasenübergang auf. Als Basismaterial wurden verschiedene thermoresponsive und biokompatible Polymere basierend auf Diethylenglykolmethylethermethacrylat (MEO2MA) und Oligo(ethylenglykol)methylethermethacrylat (OEGMA475, Mn = 475 g/ mol) über frei radikalische Copolymerisation synthetisiert. Der thermoresponsive Phasenübergang der Copolymere wurde in wässriger Lösung und in gequollenen vernetzten dünnen Schichten beobachtet. Außerdem wurde untersucht, inwiefern eine selektive Proteinbindung an geeignete funktionalisierte Copolymere die Phasenübergangstemperatur beeinflusst. Die thermoresponsiven Copolymere wurden über photovernetzbare Gruppen auf festen Oberflächen immobilisiert. Die nötigen lichtempfindlichen Vernetzereinheiten wurden mittels des polymerisierbaren Benzophenonderivates 2 (4 Benzoylphenoxy)ethylmethacrylat (BPEM) in das Copolymer integriert. Dünne Filme der Copolymere mit ca. 100 nm Schichtdicke wurden über Rotationsbeschichtung auf Siliziumwafer aufgeschleudert und anschließend durch Bestrahlung mit UV Licht vernetzt und auf der Oberfläche immobilisiert. Die Filme sind stabiler je größer der Vernetzeranteil und je größer die Molmasse der Copolymere ist. Bei einem Waschprozess nach der Vernetzung wird beispielsweise aus einem Film mit moderater Molmasse und geringem Vernetzeranteil mehr unvernetztes Copolymer ausgewaschen als bei einem höhermolekularen Copolymer mit hohem Vernetzeranteil. Die Quellbarkeit der Polymerschichten wurde mit Ellipsometrie untersucht. Sie ist größer je geringer der Vernetzeranteil in den Copolymeren ist. Schichten aus thermoresponsiven OEG Copolymeren zeigen einen Volumenphasenübergang vom Typ der LCST. Der thermoresponsive Kollaps der Schichten ist komplett reversibel, die Kollapstemperatur kann über die Zusammensetzung der Copolymere eingestellt werden. Für einen Vergleich dieser Eigenschaften mit dem gut charakterisierten und derzeit wohl am häufigsten untersuchten thermoresponsiven Polymer Poly(N-isopropylacrylamid) (PNIPAM) wurden zusätzlich photovernetzte Schichten aus PNIPAM hergestellt und ebenfalls ellipsometrisch vermessen. Im Vergleich zu PNIPAM verläuft der Phasenübergang der Schichten aus den Copolymeren mit Oligo(ethylenglykol)-seitenketten (OEG Copolymere) über einen größeren Temperaturbereich. Mit Licht einer Wellenlänge > 300 nm wurden die photosensitiven Benzophenongruppen selektiv angeregt. Bei der Verwendung kleinerer Wellenlängen vernetzten die Copolymerschichten auch ohne die Anwesenheit der lichtempfindlichen Benzophenongruppen. Dieser Effekt ließ sich zur kontrollierten Immobilisierung und Vernetzung der OEG Copolymere einsetzen. Als weitere Methode zur Immobilisierung der Copolymere wurde die Anbindung über Amidbindungen untersucht. Dazu wurden OEG Copolymere mit dem carboxylgruppenhaltigen 2 Succinyloxyethylmethacrylat (MES) auf mit 3 Aminopropyldimethylethoxysilan (APDMSi) silanisierte Siliziumwafer rotationsbeschichtet, und mit dem oligomeren α, ω Diamin Jeffamin® ED 900 vernetzt. Die Vernetzungsreaktion erfolgte ohne weitere Zusätze durch Erhitzen der Proben. Die Hydrogelschichten waren anschließend stabil und zeigten neben thermoresponsivem auch pH responsives Verhalten. Um zu untersuchen, ob die Phasenübergangstemperatur durch eine Proteinbindung beeinflusst werden kann, wurde ein polymerisierbares Biotinderivat 2 Biotinyl-aminoethylmethacrylat (BAEMA) in das thermoresponsive Copolymer eingebaut. Der Einfluss des biotinbindenen Proteins Avidin auf das thermoresponsive Verhalten des Copolymers in Lösung wurde untersucht. Die spezifische Bindung von Avidin an das biotinylierte Copolymer verschob die Übergangstemperatur deutlich zu höheren Temperaturen. Kontrollversuche zeigten, dass dieses Verhalten auf eine selektive Proteinbindung zurückzuführen ist. Thermoresponsive OEG Copolymere mit photovernetzbaren Gruppen aus BPEM und Biotingruppen aus BAEMA wurden über Rotationsbeschichtung auf Gold- und auf Siliziumoberflächen aufgetragen und durch UV Strahlung vernetzt. Die spezifische Bindung von Avidin an die Copolymerschicht wurde mit Oberflächenplasmonenresonanz und Ellipsometrie untersucht. Die Bindungskapazität der Schichten war umso größer, je kleiner der Vernetzeranteil, d. h. je größer die Maschenweite des Netzwerkes war. Die Quellbarkeit der Schichten wurde durch die Avidinbindung erhöht. Bei hochgequollenen Systemen verursachte eine Mehrfachbindung des tetravalenten Avidins allerdings eine zusätzliche Quervernetzung des Polymernetzwerkes. Dieser Effekt wirkt der erhöhten Quellbarkeit durch die Avidinbindung entgegen und lässt die Polymernetzwerke schrumpfen. N2 - This work describes the synthesis and characterization of thermoresponsive polymers and their immobilisation on solid substrates as nanoscale thin films. The used polymers were of the lower critical solution temperature (LCST) type. They are well soluble in a solvent below a and get insoluble above a certain temperature, thus they exhibit a phase transition at a critical temperature. Different thermoresponsive biocompatible copolymers based on oligo(ethylene glycol) methyl ether methacrylate (OEGMA475) and di(ethylene glycol) methyl ether methacrylate (MEO2MA) were synthesized by free radical polymerization. The phase transition was observed in solution and in thin immobilized copolymer layers. Further regarding the phase transition the influence of selective protein binding onto functionalized copolymers was studied. Solid surfaces were modified with thermoresponsive copolymers based on MEO2MA, OEGMA475 and 2 (4 benzoylphenoxy)ethyl methacrylate (BPEM) as photo crosslinkable groups. Thin films of 100 nm thickness were spin-casted onto silicon wafers and subsequently crosslinked and immobilized by irradiation with UV-light. Their stability is controlled by the crosslinker ratio and by the molar mass of the copolymers. For instance a washing process after crosslinking removes more unbound polymer if the polymer contains less crosslinker and has a lower molecular weight. The swellability of the films was investigated by ellipsometry. It gets higher with lower crosslinker ratio. Layers of thermoresponsive copolymers exhibited a swelling/ deswelling phase transition of the lower critical solution temperature (LCST) type. The transition is completely reversible and the transition temperature can be adjusted by the composition of the copolymers. Compared to similarly synthesized photo-crosslinked layers of the well investigated thermoresponsive copolymer poly-(N-isopropyl acrylamide) (PNIPAM) the phase transition exceeds a larger temperature range. The photo-crosslinking of the OEG copolymers was accomplished in a controlled manner with light of wavelengths > 300 nm. Light of smaller wavelengths crosslinked the copolymer layers even without the presence of photosensitive groups. This effect could be exploited for a controlled immobilization and crosslinking of the OEG copolymers. As further method for crosslinking the formation of amide bonds was investigated. Therefore OEG copolymers containing 2 succinyloxyethyl methacrylate (MES) were spin-casted onto silicon substrates silanized with (3 aminopropyl)dimethylethoxysilane (APDMSi) and crosslinked with oligomeric α, ω diamine Jeffamin® ED 900. The crosslinking reaction was carried out by annealing the dry substrate. No further additives were added for the reaction. After annealing the hydrogel layers were stable against washing and showed thermoresponsive and pH responsive behaviour. In order to investigate whether the phase transition can be affected by specific protein binding, a polymerizable biotin derivative biotinyl-2-aminoethyl methacrylate (BAEMA) was integrated into the base thermoresponsive OEG copolymer. The influence of avidin on its thermoresponsive behaviour was investigated. The specific binding of avidin to the bioitinylated copolymer caused a marked shift of the transition temperature to higher temperatures. Control experiments proved that this effect can be ascribed to a specific protein binding. Thermoresponsive OEG Copolymers with photo-crosslinkable groups from BPEM and biotin groups from BAEMA were spin casted onto gold and silicon substrates and subsequently crosslinked by irradiation with UV light. The specific binding of Avidin onto the copolymer layer was investigated by surface plasmon resonance spectroscopy and ellipsometry. The binding capacity was higher if the mesh size of the hydrogel layers was higher. Upon binding of the Avidin the swellability of the layers was increased. At temperatures below the phase transition for loosely crosslinked copolymer layers an additional crosslinking effect of Avidin was observed. This effect counteracts the swelling of the hydrogel and leads to a shrinkage of the hydrogel layer. KW - Thermoresponsiv KW - OEGMA KW - MEO2MA KW - Protein KW - Hydrogel KW - Film KW - thermoresponsive KW - OEGMA KW - MEO2MA KW - protein KW - hydrogel KW - film Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-66261 ER -