TY - THES A1 - Wechakama, Maneenate T1 - Multi-messenger constraints and pressure from dark matter annihilation into electron-positron pairs T1 - Multi-Messenger-Grenzen und Druck von Dunkler Materie-Annihilation in Elektron-Positron-Paaren N2 - Despite striking evidence for the existence of dark matter from astrophysical observations, dark matter has still escaped any direct or indirect detection until today. Therefore a proof for its existence and the revelation of its nature belongs to one of the most intriguing challenges of nowadays cosmology and particle physics. The present work tries to investigate the nature of dark matter through indirect signatures from dark matter annihilation into electron-positron pairs in two different ways, pressure from dark matter annihilation and multi-messenger constraints on the dark matter annihilation cross-section. We focus on dark matter annihilation into electron-positron pairs and adopt a model-independent approach, where all the electrons and positrons are injected with the same initial energy E_0 ~ m_dm*c^2. The propagation of these particles is determined by solving the diffusion-loss equation, considering inverse Compton scattering, synchrotron radiation, Coulomb collisions, bremsstrahlung, and ionization. The first part of this work, focusing on pressure from dark matter annihilation, demonstrates that dark matter annihilation into electron-positron pairs may affect the observed rotation curve by a significant amount. The injection rate of this calculation is constrained by INTEGRAL, Fermi, and H.E.S.S. data. The pressure of the relativistic electron-positron gas is computed from the energy spectrum predicted by the diffusion-loss equation. For values of the gas density and magnetic field that are representative of the Milky Way, it is estimated that the pressure gradients are strong enough to balance gravity in the central parts if E_0 < 1 GeV. The exact value depends somewhat on the astrophysical parameters, and it changes dramatically with the slope of the dark matter density profile. For very steep slopes, as those expected from adiabatic contraction, the rotation curves of spiral galaxies would be affected on kiloparsec scales for most values of E_0. By comparing the predicted rotation curves with observations of dwarf and low surface brightness galaxies, we show that the pressure from dark matter annihilation may improve the agreement between theory and observations in some cases, but it also imposes severe constraints on the model parameters (most notably, the inner slope of the halo density profile, as well as the mass and the annihilation cross-section of dark matter particles into electron-positron pairs). In the second part, upper limits on the dark matter annihilation cross-section into electron-positron pairs are obtained by combining observed data at different wavelengths (from Haslam, WMAP, and Fermi all-sky intensity maps) with recent measurements of the electron and positron spectra in the solar neighbourhood by PAMELA, Fermi, and H.E.S.S.. We consider synchrotron emission in the radio and microwave bands, as well as inverse Compton scattering and final-state radiation at gamma-ray energies. For most values of the model parameters, the tightest constraints are imposed by the local positron spectrum and synchrotron emission from the central regions of the Galaxy. According to our results, the annihilation cross-section should not be higher than the canonical value for a thermal relic if the mass of the dark matter candidate is smaller than a few GeV. In addition, we also derive a stringent upper limit on the inner logarithmic slope α of the density profile of the Milky Way dark matter halo (α < 1 if m_dm < 5 GeV, α < 1.3 if m_dm < 100 GeV and α < 1.5 if m_dm < 2 TeV) assuming a dark matter annihilation cross-section into electron-positron pairs (σv) = 3*10^−26 cm^3 s^−1, as predicted for thermal relics from the big bang. N2 - Trotz vieler Hinweise auf die Existenz von dunkler Materie durch astrophysikalische Beobachtungen hat sich die dunkle Materie bis heute einem direkten oder indirekten Nachweis entzogen. Daher gehrt der Nachweis ihrer Existenz und die Enthüllung ihrer Natur zu einem der faszinierensten Herausforderungen der heutigen Kosmologie und Teilchenphysik. Diese Arbeit versucht die Natur von dunkler Materie durch indirekte Signaturen von der Paarzerstrahlung dunkler Materie in Elektron-Positronpaare auf zwei verschiedene Weisen zu untersuchen, nämlich anhand des Drucks durch die Paarzerstrahlung dunkler Materie und durch Grenzen des Wirkungsquerschnitts für die Paarzerstrahlung dunkler Materie aus verschiedenen Beobachtungsbereichen. Wir konzentrieren uns dabei auf die Zerstrahlung dunkler Materie in Elektron-Positron-Paare und betrachten einen modellunabhängigen Fall, bei dem alle Elektronen und Positronen mit der gleichen Anfangsenergie E_0 ~ m_dm*c^2 injiziert werden. Die Fortbewegung dieser Teilchen wird dabei bestimmt durch die Lösung der Diffusions-Verlust-Gleichung unter Berücksichtigung von inverser Compton-Streuung, Synchrotronstrahlung, Coulomb-Streuung, Bremsstrahlung und Ionisation. Der erste Teil dieser Arbeit zeigt, dass die Zerstrahlung dunkler Materie in Elektron-Positron-Paare die gemessene Rotationskurve signifikant beeinflussen kann. Die Produktionsrate ist dabei durch Daten von INTEGRAL, Fermi und H.E.S.S. begrenzt. Der Druck des relativistischen Elektron-Positron Gases wird aus dem Energiespektrum errechnet, welches durch die Diffusions-Verlust-Gleichung bestimmt ist. Für Werte der Gasdichte und des magnetischen Feldes, welche für unsere Galaxie repräsentativ sind, lässt sich abschätzen, dass für E_0 < 1 GeV die Druckgradienten stark genug sind, um Gravitationskräfte auszugleichen. Die genauen Werte hängen von den verwendeten astrophysikalischen Parametern ab, und sie ändern sich stark mit dem Anstieg des dunklen Materie-Profils. Für sehr große Anstiege, wie sie für adiabatische Kontraktion erwartet werden, werden die Rotationskurven von Spiralgalaxien auf Skalen von einegen Kiloparsek für die meisten Werte von E_0 beeinflusst. Durch Vergleich der erwarteten Rotationskurven mit Beobachtungen von Zwerggalaxien und Galaxien geringer Oberflächentemperatur zeigen wir, dass der Druck von Zerstrahlung dunkler Materie die Übereinstimmung von Theorie und Beobachtung in einigen Fällen verbessern kann. Aber daraus resultieren auch starke Grenzen für die Modellparameter - vor allem für den inneren Anstieg des Halo-Dichteprofils, sowie die Masse und den Wirkungsquerschnitt der dunklen Materie-Teilchen. Im zweiten Teil werden obere Grenzen für die Wirkungsquerschnitte der Zerstrahlung der dunkler Materie in Elektron-Positron-Paare erhalten, indem die beobachteten Daten bei unterschiedlichen Wellenlängen (von Haslam, WMAP und Fermi) mit aktuellen Messungen von Elektron-Positron Spektren in der solaren Nachbarschaft durch PAMELA, Fermi und H.E.S.S. kombiniert werden. Wir betrachten Synchrotronemission bei Radiound Mikrowellenfrequenzen, sowie inverse Compton-Streuung und Final-State-Strahlung bei Energien im Bereich der Gamma-Strahlung. Für die meisten Werte der Modellparameter werden die stärksten Schranken durch das lokale Positron-Spektrum und die Synchrotronemission im Zentrum unser Galaxie bestimmt. Nach diesen Ergebnissen sollte der Wirkungsquerschnitt für die Paarzerstrahlung nicht größer als der kanonische Wert für thermische Relikte sein, wenn die Masse der dunklen Materie-Kandidaten kleiner als einige GeV ist. Zusätzlich leiten wir eine obere Grenze für den inneren logarithmische Anstieg α des Dichteprofiles des dunklen Materie Halos unserer Galaxie ab. KW - dunkle Materie KW - Astroteilchenphysik KW - Strahlung Mechanismen KW - Galaxy Struktur KW - Rotationskurven KW - dark matter KW - astroparticle physics KW - radiation mechanisms KW - galaxy structure KW - rotation curves Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-67401 ER - TY - THES A1 - Schmidt, Robert W. T1 - Cosmological applications of gravitational lensing N2 - In dieser Arbeit benutze ich den Gravitationslinseneffekt als ein Werkzeug, um zwei recht unterschiedliche kosmologische Fragestellungen zu bearbeiten: die Natur der dunklen Materie in Galaxienhalos und die Rotation des Universums. Zuerst untersuche ich den Mikrolinseneffekt in den Gravitationlinsensystemen Q0957+561 und Q2237+0305. In diesen Systemen scheint das Licht eines Quasars durch die Linsengalaxie hindurch. Aufgrund der Relativbewegung zwischen Quasar, Linsengalaxie und Beobachter verursachen kompakte Objekte innerhalb der Galaxie oder dem Galaxienhalo Helligkeitsfluktuationen des Hintergrundquasars. Ich vergleiche die am 3.5m Teleskop des Apache Point Observatory zwischen 1995 und 1998 gewonnene Lichtkurve des Doppelquasars Q0957+561 (Colley, Kundic & Turner 2000) mit numerischen Simulationen, um zu untersuchen, ob der Halo der Linsengalaxie aus massiven kompakten Objekten (MACHOs) besteht. Dieser Test wurde zuerst von Gott (1981) vorgeschlagen. Ich kann MACHO-Massen von 10^-6 M_sun bis zu 10^-2 M_sun ausschliessen, sofern der Quasar kleiner ist als 3x10^14 h_60^-0.5 cm und MACHOs mehr als 50% des dunklen Halos ausmachen. Im zweiten Teil der Arbeit stelle ich neue Beobachtungsdaten fuer den Vierfachquasar Q2237+0305 vor, die am 3.5m Teleskop des Apache Point Observatory zwischen Juni 1995 und Januar 1998 gewonnen wurden. Obwohl die Daten bei veraenderlichen, oft schlechten Seeing Bedingungen und grober Pixelaufloesung aufgenommen wurden, ist die Photometrie der beiden helleren Quasarbilder A und B mit Hilfe von HST-Beobachtungen moeglich. Ich finde ein Helligkeitsmaximum in Bild A mit einer Amplitude von 0.4 bis 0.5 mag und einer Dauer von wenigstens 100 Tagen. Dies zeigt, dass in der Linsengalaxie der Mikrolinseneffekt stattgefunden hat. Im abschliessenden Teil der Arbeit benutze ich dann den schwachen Gravitationslinseneffekt, um Grenzen fuer eine Klasse von rotierenden Kosmologien vom Goedel-Typ zu ermitteln, die von Korotky & Obukhov (1996) beschrieben wurde. In Studien des schwachen Linseneffektes werden die Formen von tausenden von Hintergrundgalaxien vermessen und gemittelt. Dabei werden kohaerente Verzerrungen der Galaxienformen gemessen, die von Massenverteilungen im Vordergrund oder von der grossraeumigen Struktur der Raumzeit selbst verursacht werden. Ich berechne die vorhergesagte Scherung als Funktion der Rotverschiebung in rotierenden Kosmologien vom Goedel-Typ und vergleiche diese mit der oberen Grenze fuer die kosmische Scherung gamma_limit von 0.04, die in Studien des schwachen Linseneffektes gewonnen wurde. Dieser Vergleich zeigt, dass Modelle vom Goedel-Typ keine groesseren Rotationen omega als H_0=6.1x10^-11 h_60/Jahr haben koennen, wenn die Grenze fuer die kosmische Scherung fuer den ganzen Himmel gilt. N2 - In this thesis we use the gravitational lensing effect as a tool to tackle two rather different cosmological topics: the nature of the dark matter in galaxy halos, and the rotation of the universe. Firstly, we study the microlensing effect in the gravitational lens systems Q0957+561 and Q2237+0305. In these systems the light from the quasar shines directly through the lensing galaxy. Due to the relative motion of the quasar, the lensing galaxy, and the observer compact objects in the galaxy or galaxy halo cause brightness fluctuations of the light from the background quasar. We compare light curve data from a monitoring program of the double quasar Q0957+561 at the 3.5m telescope at Apache Point Observatory from 1995 to 1998 (Colley, Kundic & Turner 2000) with numerical simulations to test whether the halo of the lensing galaxy consists of massive compact objects (MACHOs). This test was first proposed by Gott (1981). We can exclude MACHO masses from 10^-6 M_sun up to 10^-2 M_sun for quasar sizes of less than 3x10^14 h_60^-0.5 cm if the MACHOs make up at least 50% of the dark halo. Secondly, we present new light curve data for the gravitationally lensed quadruple quasar Q2237+0305 taken at the 3.5m telescope at Apache Point Observatory from June 1995 to January 1998. Although the images were taken under variable, often poor seeing conditions and with coarse pixel sampling, photometry is possible for the two brighter quasar images A and B with the help from HST observations. We find independent evidence for a brightness peak in image A of 0.4 to 0.5 mag with a duration of at least 100 days, which indicates that microlensing has taken place in the lensing galaxy. Finally, we use the weak gravitational lensing effect to put limits on a class of Goedel-type rotating cosmologies described by Korotky & Obukhov (1996). In weak lensing studies the shapes of thousands of background galaxies are measured and averaged to reveal coherent gravitational distortions of the galaxy shapes by foreground matter distributions, or by the large-scale structure of space-time itself. We calculate the predicted shear as a function of redshift in Goedel-type rotating cosmologies and compare this to the upper limit on cosmic shear gamma_limit of approximately 0.04 from weak lensing studies. We find that Goedel-type models cannot have larger rotations omega than H_0=6.1x10^-11 h_60/year if this shear limit is valid for the whole sky. KW - Gravitationslinseneffekt KW - Quasare KW - Kosmologie KW - dunkle Materie Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0000261 ER -