TY - THES A1 - Huegle, Johannes T1 - Causal discovery in practice: Non-parametric conditional independence testing and tooling for causal discovery T1 - Kausale Entdeckung in der Praxis: Nichtparametrische bedingte Unabhängigkeitstests und Werkzeuge für die Kausalentdeckung N2 - Knowledge about causal structures is crucial for decision support in various domains. For example, in discrete manufacturing, identifying the root causes of failures and quality deviations that interrupt the highly automated production process requires causal structural knowledge. However, in practice, root cause analysis is usually built upon individual expert knowledge about associative relationships. But, "correlation does not imply causation", and misinterpreting associations often leads to incorrect conclusions. Recent developments in methods for causal discovery from observational data have opened the opportunity for a data-driven examination. Despite its potential for data-driven decision support, omnipresent challenges impede causal discovery in real-world scenarios. In this thesis, we make a threefold contribution to improving causal discovery in practice. (1) The growing interest in causal discovery has led to a broad spectrum of methods with specific assumptions on the data and various implementations. Hence, application in practice requires careful consideration of existing methods, which becomes laborious when dealing with various parameters, assumptions, and implementations in different programming languages. Additionally, evaluation is challenging due to the lack of ground truth in practice and limited benchmark data that reflect real-world data characteristics. To address these issues, we present a platform-independent modular pipeline for causal discovery and a ground truth framework for synthetic data generation that provides comprehensive evaluation opportunities, e.g., to examine the accuracy of causal discovery methods in case of inappropriate assumptions. (2) Applying constraint-based methods for causal discovery requires selecting a conditional independence (CI) test, which is particularly challenging in mixed discrete-continuous data omnipresent in many real-world scenarios. In this context, inappropriate assumptions on the data or the commonly applied discretization of continuous variables reduce the accuracy of CI decisions, leading to incorrect causal structures. Therefore, we contribute a non-parametric CI test leveraging k-nearest neighbors methods and prove its statistical validity and power in mixed discrete-continuous data, as well as the asymptotic consistency when used in constraint-based causal discovery. An extensive evaluation of synthetic and real-world data shows that the proposed CI test outperforms state-of-the-art approaches in the accuracy of CI testing and causal discovery, particularly in settings with low sample sizes. (3) To show the applicability and opportunities of causal discovery in practice, we examine our contributions in real-world discrete manufacturing use cases. For example, we showcase how causal structural knowledge helps to understand unforeseen production downtimes or adds decision support in case of failures and quality deviations in automotive body shop assembly lines. N2 - Kenntnisse über die Strukturen zugrundeliegender kausaler Mechanismen sind eine Voraussetzung für die Entscheidungsunterstützung in verschiedenen Bereichen. In der Fertigungsindustrie beispielsweise erfordert die Fehler-Ursachen-Analyse von Störungen und Qualitätsabweichungen, die den hochautomatisierten Produktionsprozess unterbrechen, kausales Strukturwissen. In Praxis stützt sich die Fehler-Ursachen-Analyse in der Regel jedoch auf individuellem Expertenwissen über assoziative Zusammenhänge. Aber "Korrelation impliziert nicht Kausalität", und die Fehlinterpretation assoziativer Zusammenhänge führt häufig zu falschen Schlussfolgerungen. Neueste Entwicklungen von Methoden des kausalen Strukturlernens haben die Möglichkeit einer datenbasierten Betrachtung eröffnet. Trotz seines Potenzials zur datenbasierten Entscheidungsunterstützung wird das kausale Strukturlernen in der Praxis jedoch durch allgegenwärtige Herausforderungen erschwert. In dieser Dissertation leisten wir einen dreifachen Beitrag zur Verbesserung des kausalen Strukturlernens in der Praxis. (1) Das wachsende Interesse an kausalem Strukturlernen hat zu einer Vielzahl von Methoden mit spezifischen statistischen Annahmen über die Daten und verschiedenen Implementierungen geführt. Daher erfordert die Anwendung in der Praxis eine sorgfältige Prüfung der vorhandenen Methoden, was eine Herausforderung darstellt, wenn verschiedene Parameter, Annahmen und Implementierungen in unterschiedlichen Programmiersprachen betrachtet werden. Hierbei wird die Evaluierung von Methoden des kausalen Strukturlernens zusätzlich durch das Fehlen von "Ground Truth" in der Praxis und begrenzten Benchmark-Daten, welche die Eigenschaften realer Datencharakteristiken widerspiegeln, erschwert. Um diese Probleme zu adressieren, stellen wir eine plattformunabhängige modulare Pipeline für kausales Strukturlernen und ein Tool zur Generierung synthetischer Daten vor, die umfassende Evaluierungsmöglichkeiten bieten, z.B. um Ungenauigkeiten von Methoden des Lernens kausaler Strukturen bei falschen Annahmen an die Daten aufzuzeigen. (2) Die Anwendung von constraint-basierten Methoden des kausalen Strukturlernens erfordert die Wahl eines bedingten Unabhängigkeitstests (CI-Test), was insbesondere bei gemischten diskreten und kontinuierlichen Daten, die in vielen realen Szenarien allgegenwärtig sind, die Anwendung erschwert. Beispielsweise führen falsche Annahmen der CI-Tests oder die Diskretisierung kontinuierlicher Variablen zu einer Verschlechterung der Korrektheit der Testentscheidungen, was in fehlerhaften kausalen Strukturen resultiert. Um diese Probleme zu adressieren, stellen wir einen nicht-parametrischen CI-Test vor, der auf Nächste-Nachbar-Methoden basiert, und beweisen dessen statistische Validität und Trennschärfe bei gemischten diskreten und kontinuierlichen Daten, sowie dessen asymptotische Konsistenz in constraint-basiertem kausalem Strukturlernen. Eine umfangreiche Evaluation auf synthetischen und realen Daten zeigt, dass der vorgeschlagene CI-Test bestehende Verfahren hinsichtlich der Korrektheit der Testentscheidung und gelernter kausaler Strukturen übertrifft, insbesondere bei geringen Stichprobengrößen. (3) Um die Anwendbarkeit und Möglichkeiten kausalen Strukturlernens in der Praxis aufzuzeigen, untersuchen wir unsere Beiträge in realen Anwendungsfällen aus der Fertigungsindustrie. Wir zeigen an mehreren Beispielen aus der automobilen Karosseriefertigungen wie kausales Strukturwissen helfen kann, unvorhergesehene Produktionsausfälle zu verstehen oder eine Entscheidungsunterstützung bei Störungen und Qualitätsabweichungen zu geben. KW - causal discovery KW - causal structure learning KW - causal AI KW - non-parametric conditional independence testing KW - manufacturing KW - causal reasoning KW - mixed data KW - kausale KI KW - kausale Entdeckung KW - kausale Schlussfolgerung KW - kausales Strukturlernen KW - Fertigung KW - gemischte Daten KW - nicht-parametrische bedingte Unabhängigkeitstests Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-635820 ER - TY - THES A1 - Dörries, Timo Julian T1 - Anomalous transport and non-Gaussian dynamics in mobile-immobile models N2 - The mobile-immobile model (MIM) has been established in geoscience in the context of contaminant transport in groundwater. Here the tracer particles effectively immobilise, e.g., due to diffusion into dead-end pores or sorption. The main idea of the MIM is to split the total particle density into a mobile and an immobile density. Individual tracers switch between the mobile and immobile state following a two-state telegraph process, i.e., the residence times in each state are distributed exponentially. In geoscience the focus lies on the breakthrough curve (BTC), which is the concentration at a fixed location over time. We apply the MIM to biological experiments with a special focus on anomalous scaling regimes of the mean squared displacement (MSD) and non-Gaussian displacement distributions. As an exemplary system, we have analysed the motion of tau proteins, that diffuse freely inside axons of neurons. Their free diffusion thereby corresponds to the mobile state of the MIM. Tau proteins stochastically bind to microtubules, which effectively immobilises the tau proteins until they unbind and continue diffusing. Long immobilisation durations compared to the mobile durations give rise to distinct non-Gaussian Laplace shaped distributions. It is accompanied by a plateau in the MSD for initially mobile tracer particles at relevant intermediate timescales. An equilibrium fraction of initially mobile tracers gives rise to non-Gaussian displacements at intermediate timescales, while the MSD remains linear at all times. In another setting bio molecules diffuse in a biosensor and transiently bind to specific receptors, where advection becomes relevant in the mobile state. The plateau in the MSD observed for the advection-free setting and long immobilisation durations persists also for the case with advection. We find a new clear regime of anomalous diffusion with non-Gaussian distributions and a cubic scaling of the MSD. This regime emerges for initially mobile and for initially immobile tracers. For an equilibrium fraction of initially mobile tracers we observe an intermittent ballistic scaling of the MSD. The long-time effective diffusion coefficient is enhanced by advection, which we physically explain with the variance of mobile durations. Finally, we generalize the MIM to incorporate arbitrary immobilisation time distributions and focus on a Mittag-Leffler immobilisation time distribution with power-law tail ~ t^(-1-mu) with 0