TY - THES A1 - Lauer-Dünkelberg, Gregor T1 - Extensional deformation and landscape evolution of the Central Andean Plateau T1 - Dehnungsdeformation und Landschaftsentwicklung des zentralen Andenplateaus N2 - Mountain ranges can fundamentally influence the physical and and chemical processes that shape Earths’ surface. With elevations of up to several kilometers they create climatic enclaves by interacting with atmospheric circulation and hydrologic systems, thus leading to a specific distribution of flora and fauna. As a result, the interiors of many Cenozoic mountain ranges are characterized by an arid climate, internally drained and sediment-filled basins, as well as unique ecosystems that are isolated from the adjacent humid, low-elevation regions along their flanks and forelands. These high-altitude interiors of orogens are often characterized by low relief and coalesced sedimentary basins, commonly referred to as plateaus, tectono-geomorphic entities that result from the complex interactions between mantle-driven geological and tectonic conditions and superposed atmospheric and hydrological processes. The efficiency of these processes and the fate of orogenic plateaus is therefore closely tied to the balance of constructive and destructive processes – tectonic uplift and erosion, respectively. In numerous geological studies it has been shown that mountain ranges are delicate systems that can be obliterated by an imbalance of these underlying forces. As such, Cenozoic mountain ranges might not persist on long geological timescales and will be destroyed by erosion or tectonic collapse. Advancing headward erosion of river systems that drain the flanks of the orogen may ultimately sever the internal drainage conditions and the maintenance of storage of sediments within the plateau, leading to destruction of plateau morphology and connectivity with the foreland. Orogenic collapse may be associated with the changeover from a compressional stress field with regional shortening and topographic growth, to a tensional stress field with regional extensional deformation and ensuing incision of the plateau. While the latter case is well-expressed by active extensional faults in the interior parts of the Tibetan Plateau and the Himalaya, for example, the former has been attributed to have breached the internally drained areas of the high-elevation sectors of the Iranian Plateau. In the case of the Andes of South America and their internally drained Altiplano-Puna Plateau, signs of both processes have been previously described. However, in the orogenic collapse scenario the nature of the extensional structures had been primarily investigated in the northern and southern terminations of the plateau; in some cases, the extensional faults were even regarded to be inactive. After a shallow earthquake in 2020 within the Eastern Cordillera of Argentina that was associated with extensional deformation, the state of active deformation and the character of the stress field in the central parts of the plateau received renewed interest to explain a series of extensional structures in the northernmost sectors of the plateau in north-western Argentina. This study addresses (1) the issue of tectonic orogenic collapse of the Andes and the destruction of plateau morphology by studying the fill and erosion history of the central eastern Andean Plateau using sedimentological and geochronological data and (2) the kinematics, timing and magnitude of extensional structures that form well-expressed fault scarps in sediments of the regional San Juan del Oro surface, which is an integral part of the Andean Plateau and adjacent morphotectonic provinces to the east. Importantly, sediment properties and depositional ages document that the San Juan del Oro Surface was not part of the internally-drained Andean Plateau, but rather associated with a foreland-directed drainage system, which was modified by the Andean orogeny and that became successively incorporated into the orogen by the eastward-migration of the Andean deformation front during late Miocene – Pliocene time. Structural and geomorphic observations within the plateau indicate that extensional processes must have been repeatedly active between the late Miocene and Holocene supporting the notion of plateau-wide extensional processes, potentially associated with Mw ~ 7 earthquakes. The close relationship between extensional joints and fault orientations underscores that 3 was oriented horizontally in NW-SE direction and 1 was vertical. This unambiguously documents that the observed deformation is related to gravitational forces that drive the orogenic collapse of the plateau. Applied geochronological analyses suggest that normal faulting in the northern Puna was active at about 3 Ma, based on paired cosmogenic nuclide dating of sediment fill units. Possibly due to regional normal faulting the drainage system within the plateau was modified, promoting fluvial incision. N2 - Gebirge beeinflussen grundlegend die physikalischen und chemischen Prozesse, die die Oberfläche der Erde formen. Mit Höhen von bis zu mehreren Tausend Metern können sie als topografische Barrieren fungieren, die mit atmosphärischen Zirkulationen und hydrologischen Systemen wechselwirken, klimatische Enklaven schaffen und dadurch die Verbreitung von Flora und Fauna einschränken. Infolgedessen sind die inneren Teile vieler känozoischer Gebirge durch geschlossene Beckenstrukturen gekennzeichnet, die einzigartige, von den niedriger gelegenen Bereichen des Vorlands isolierte Ökosysteme beherbergen. Diese durch niedriges Relief geprägte orographische Sektoren werden als Plateaus bezeichnet - das Ergebnis komplexer Wechselwirkungen geologischer, hydrologischer und atmosphärischer Prozesse. Das Fortbestehen solcher orogenen Plateaus ist daher an das Gleichgewicht zwischen den konstruktiven und destruktiven Prozessen, tektonischer Hebung und Erosion gebunden. Aus geologischen Studien geht hervor, dass Gebirgszüge fragile Systeme sind, die durch ein Ungleichgewicht dieser zugrunde liegenden Kräfte kollabieren können. Daher erscheint es unumgänglich, dass moderne Gebirge auf geologischen Zeitskalen nicht überdauern werden und voraussichtlich dem Zahn der Zeit zum Opfer fallen. Viele Studien haben sich bereits mit der Aufgabe befasst, den momentanen Zustand känozoischer Gebirge zu erforschen, um zu entschlüsseln, ob sie bereits in eine Einebnungsphase übergegangen sind. Eine solche Einebnung kann auf zwei oberflächliche Anzeichen zurückgeführt werden: i) die fortschreitende Erosion durch Flusssysteme und ii) das Vorhandensein von Extensionsstrukturen, die sich entgegen des kompressiven Spannungsfelds durch Gravitationskräfte formen. Solche Strukturen wurden bereits im Inneren des tibetischen Plateaus des zentralasiatischen Himalaya beschrieben, während eine plateauweite Einschneidung durch Flusssysteme die intern entwässerten Gebiete der hoch gelegenen Sektoren des iranischen Plateaus beobachtet wurde. Im Falle der südamerikanischen Anden und ihres intern entwässerten Altiplano-Puna-Plateaus wurden bereits Anzeichen beider Prozesse beschrieben. Im Szenario des orogenen Kollapses wurden Dehnungsstrukturen jedoch hauptsächlich an den nördlichen und südlichen Grenzen des Plateaus untersucht; in einigen Fällen wurden diese tektonischen Verwerfungen als inaktiv kategorisiert. Nach einem flachen Erdbeben im Jahr 2020 in der Ostkordillere Argentiniens, das mit solch einer Dehnungsstruktur in Verbindung gebracht wurde, weckte die Frage nach dem Zustand des aktiven Spannungsfeldes und der damit einhergehenden Deformation in den zentralen Teilen der Anden wieder neues Interesse. Die Analyse solcher Strukturen und die daraus resultierenden Erkenntnisse, würden helfen die quartäre Deformation in den hoch gelegenen Gebieten der Anden zu erklären. Diese Dissertation befasst sich daher mit (1) der Frage des tektonisch-orogenen Zusammenbruchs der Anden und der Einschneidung in die Plateaumorphologie, indem die Auffüllungs- und Erosionsgeschichte des zentralen östlichen Andenplateaus anhand von sedimentologischen und geochronologischen Daten untersucht wird, und (2) mit der Kinematik, dem zeitlichen Ablauf und dem Ausmaß von Dehnungsdeformation, die ausgeprägte Geländestufen in den sölig gelagerten Sedimenten der regionalen San Juan del Oro-Oberfläche formte, die wiederum ein integraler Bestandteil des Andenplateaus und der angrenzenden morphotektonischen Provinzen im Osten ist. Die Eigenschaften der beschriebenen Sedimente sowie deren Ablagerungsalter belegen, dass die San Juan del Oro-Oberfläche nicht Teil des intern entwässerten Andenplateaus ist, sondern vielmehr mit einem vorgelagerten Entwässerungssystem verbunden ist, das durch die Anden-Orogenese und die Ostwärtsbewegung der Deformationsfront im späten Miozän bis Pliozän sukzessive in das Orogen integriert wurde. Strukturelle und geomorphologische Beobachtungen innerhalb des Plateaus deuten darauf hin, dass eine tektonische Abschiebungen zwischen dem späten Miozän und dem Holozän wiederholt aktiv gewesen sein müssen, und möglicherweise mit Erdbeben der Stärke Mw ~ 7 in Verbindung standen. Die geometrische Beziehung zwischen Dehnungsklüften und dem Streichen der beobachteten Verwerfungen deutet darauf hin, dass die geringste Normalspannung (σ3) horizontal in NW-SE-Richtung und die maximale Normalspannung (σ1) vertikal orientiert war. Dies ist ein eindeutiger Beleg dafür, dass die beobachtete Deformation mit Gravitationskräften zusammenhängt, die den orogenen Kollaps des Plateaus vorantreiben. Geochronologische Daten deuten darauf hin, dass die Abschiebungen in der nördlichen Puna vor ca. 3 Ma aktiv waren. Möglicherweise wurde dadurch auch das Entwässerungssystem innerhalb des Plateaus beeinflusst, was eine fluviale Einschneidung begünstigte und den Zerfall des Plateaus vorantreibt. KW - Andes KW - plateau KW - extension KW - tectonics KW - normal faulting KW - geodynamics KW - geology KW - Anden KW - Dehnungsdeformation KW - Geodynamik KW - Geologie KW - Verwerfungen KW - Hochplateau KW - Tektonik KW - surface exposure dating KW - uranium-lead-dating KW - Remote sensing KW - paleoseismology KW - Oberflächenexpositionsdatierung KW - Uran-Blei-Datierung KW - Fernerkundung KW - Paleoseismologie Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-617593 ER - TY - THES A1 - Mester, Benedikt T1 - Modeling flood-induced human displacement risk under global change T1 - Modellierung des hochwasserbedingten Risikos der Vertreibung von Menschen unter globalen Veränderungen N2 - Extreme flooding displaces an average of 12 million people every year. Marginalized populations in low-income countries are in particular at high risk, but also industrialized countries are susceptible to displacement and its inherent societal impacts. The risk of being displaced results from a complex interaction of flood hazard, population exposed in the floodplains, and socio-economic vulnerability. Ongoing global warming changes the intensity, frequency, and duration of flood hazards, undermining existing protection measures. Meanwhile, settlements in attractive yet hazardous flood-prone areas have led to a higher degree of population exposure. Finally, the vulnerability to displacement is altered by demographic and social change, shifting economic power, urbanization, and technological development. These risk components have been investigated intensively in the context of loss of life and economic damage, however, only little is known about the risk of displacement under global change. This thesis aims to improve our understanding of flood-induced displacement risk under global climate change and socio-economic change. This objective is tackled by addressing the following three research questions. First, by focusing on the choice of input data, how well can a global flood modeling chain reproduce flood hazards of historic events that lead to displacement? Second, what are the socio-economic characteristics that shape the vulnerability to displacement? Finally, to what degree has climate change potentially contributed to recent flood-induced displacement events? To answer the first question, a global flood modeling chain is evaluated by comparing simulated flood extent with satellite-derived inundation information for eight major flood events. A focus is set on the sensitivity to different combinations of the underlying climate reanalysis datasets and global hydrological models which serve as an input for the global hydraulic model. An evaluation scheme of performance scores shows that simulated flood extent is mostly overestimated without the consideration of flood protection and only for a few events dependent on the choice of global hydrological models. Results are more sensitive to the underlying climate forcing, with two datasets differing substantially from a third one. In contrast, the incorporation of flood protection standards results in an underestimation of flood extent, pointing to potential deficiencies in the protection level estimates or the flood frequency distribution within the modeling chain. Following the analysis of a physical flood hazard model, the socio-economic drivers of vulnerability to displacement are investigated in the next step. For this purpose, a satellite- based, global collection of flood footprints is linked with two disaster inventories to match societal impacts with the corresponding flood hazard. For each event the number of affected population, assets, and critical infrastructure, as well as socio-economic indicators are computed. The resulting datasets are made publicly available and contain 335 displacement events and 695 mortality/damage events. Based on this new data product, event-specific displacement vulnerabilities are determined and multiple (national) dependencies with the socio-economic predictors are derived. The results suggest that economic prosperity only partially shapes vulnerability to displacement; urbanization, infant mortality rate, the share of elderly, population density and critical infrastructure exhibit a stronger functional relationship, suggesting that higher levels of development are generally associated with lower vulnerability. Besides examining the contextual drivers of vulnerability, the role of climate change in the context of human displacement is also being explored. An impact attribution approach is applied on the example of Cyclone Idai and associated extreme coastal flooding in Mozambique. A combination of coastal flood modeling and satellite imagery is used to construct factual and counterfactual flood events. This storyline-type attribution method allows investigating the isolated or combined effects of sea level rise and the intensification of cyclone wind speeds on coastal flooding. The results suggest that displacement risk has increased by 3.1 to 3.5% due to the total effects of climate change on coastal flooding, with the effects of increasing wind speed being the dominant factor. In conclusion, this thesis highlights the potentials and challenges of modeling flood- induced displacement risk. While this work explores the sensitivity of global flood modeling to the choice of input data, new questions arise on how to effectively improve the reproduction of flood return periods and the representation of protection levels. It is also demonstrated that disentangling displacement vulnerabilities is feasible, with the results providing useful information for risk assessments, effective humanitarian aid, and disaster relief. The impact attribution study is a first step in assessing the effects of global warming on displacement risk, leading to new research challenges, e.g., coupling fluvial and coastal flood models or the attribution of other hazard types and displacement events. This thesis is one of the first to address flood-induced displacement risk from a global perspective. The findings motivate for further development of the global flood modeling chain to improve our understanding of displacement vulnerability and the effects of global warming. N2 - Durch extreme Überschwemmungen werden jedes Jahr durchschnittlich 12 Millionen Menschen vertrieben. Vor allem marginalisierte Bevölkerungsgruppen in Ländern mit niedrigem Einkommen sind stark gefährdet, aber auch Industrieländer sind anfällig für Vertreibungen und die damit verbundenen gesellschaftlichen Auswirkungen. Das Risiko der Vertreibung ergibt sich aus einer komplexen Wechselwirkung zwischen der Hochwassergefahr, der Exposition der in den Überschwemmungsgebieten lebenden Bevölkerung und der sozioökonomischen Vulnerabilität. Die fortschreitende globale Erderwärmung verändert die Intensität, Häufigkeit und Dauer von Hochwassergefahren und untergräbt die bestehenden Schutzmaßnahmen. Gleichzeitig hat die Besiedlung attraktiver, aber gefährdeter Überschwemmungsgebiete zu einem höheren Maß an Exposition der Bevölkerung geführt. Schließlich wird die Vulnerabilität für Vertreibungen durch den demografischen und sozialen Wandel, die Verlagerung der Wirtschaftskräfte, die Urbanisierung und die technologische Entwicklung verändert. Diese Risikokomponenten wurden im Zusammenhang mit dem Verlust von Menschenleben und wirtschaftlichen Schäden intensiv untersucht, über das Risiko der Vertreibung im Rahmen des globalen Wandels ist jedoch nur wenig bekannt. Diese Arbeit zielt darauf ab, unser Verständnis des durch Überschwemmungen verursachten Vertreibungsrisikos unter dem Einfluss des globalen Klimawandels und des sozioökonomischen Wandels zu verbessern. Dieses Ziel wird durch die Beantwortung der folgenden drei Forschungsfragen erreicht. Erstens: Wie gut kann eine globale Hochwassermodellierungskette die Hochwassergefahren historischer Ereignisse, die zu Vertreibung geführt haben, reproduzieren, wobei ein Fokus auf die Wahl der Eingangsdaten gelegt wird? Zweitens: Welches sind die sozioökonomischen Merkmale, die die Vulnerabilität für Vertreibung beeinflussen? Und schließlich, inwieweit hat der Klimawandel möglicherweise zu den jüngsten hochwasserbedingten Vertreibungsereignissen beigetragen? Zur Beantwortung der ersten Frage wird eine globale Hochwassermodellierungskette durch den Vergleich der simulierten Überschwemmungsfläche mit satellitengestützten Überschwemmungsdaten für acht große Hochwasserereignisse überprüft. Der Schwerpunkt liegt dabei auf der Sensitivität gegenüber verschiedenen Kombinationen der zugrunde liegenden Klimareanalysedatensätzen und globalen hydrologischen Modellen, die als Input für das globale Hydraulikmodell dienen. Ein Bewertungsschema von Leistungsindikatoren zeigt, dass die simulierte Überschwemmungsfläche ohne Berücksichtigung des Hochwasserschutzes meist überschätzt wird und nur bei wenigen Ereignissen von der Wahl der globalen hydrologischen Modelle abhängt. Die Ergebnisse sind empfindlicher gegenüber dem zugrunde liegenden Climate Forcing, wobei sich zwei Datensätze erheblich von einem dritten unterscheiden. Im Gegensatz dazu führt die Einbeziehung von Hochwasserschutznormen zu einer Unterschätzung der Überschwemmungsfläche, was auf mögliche Mängel bei der Schätzung des Schutzniveaus oder der Hochwasserhäufigkeitsverteilung innerhalb der Modellierungskette hinweist. Nach der Analyse des physikalischen Hochwassergefahrenmodells werden in einem nächsten Schritt die sozioökonomischen Triebkräfte für die Vulnerabilität für Vertreibungen untersucht. Zu diesem Zweck wird eine satellitengestützte, globale Sammlung von Hochwasseüberschwemmungsflächen mit zwei Katastrophendatenbänken verknüpft, um die gesellschaftlichen Auswirkungen mit der entsprechenden Hochwassergefahr zusammenzuführen. Für jedes Ereignis werden die Anzahl der betroffenen Menschen, Vermögenswerte und kritischen Infrastrukturen sowie sozioökonomische Indikatoren berechnet. Die daraus resultierenden Datensätze werden öffentlich zugänglich gemacht und enthalten 335 Vertreibungsereignisse und 695 Todesopfer-/Schadensereignisse. Auf der Grundlage dieses neuen Datenprodukts werden ereignisspezifische Vertreibungsvulnerabilitäten bestimmt und vielfältige (nationale) Abhängigkeiten mit den sozioökonomischen Prädiktoren abgeleitet. Die Ergebnisse deuten darauf hin, dass wirtschaftlicher Wohlstand nur teilweise die Anfälligkeit für Vertreibungen beeinflusst; Urbanisierung, Kindersterblichkeitsrate, der Anteil älterer Menschen, Bevölkerungsdichte und kritische Infrastrukturen weisen eine stärkere funktionale Beziehung auf, was den Schluss zulässt, dass ein höheres Entwicklungsniveau im Allgemeinen mit einer geringeren Vulnerabilität verbunden ist. Neben der Untersuchung der kontextabhängigen Faktoren der Vulnerabilität wird auch die Rolle des Klimawandels im Zusammenhang mit der Vertreibung von Menschen untersucht. Am Beispiel des Zyklons Idai und den damit verbundenen extremen Küstenüberschwemmungen in Mosambik wird ein Ansatz zur Attribution der Auswirkungen angewandt. Eine Kombination aus Küstenüberflutungsmodellierung und Satellitenbildern wird verwendet, um faktische und kontrafaktische Überschwemmungsereignisse zu konstruieren. Diese Storyline-artige Attributionsmethode ermöglicht die Untersuchung der isolierten oder kombinierten Auswirkungen des Meeresspiegelanstiegs und der Intensivierung der Windgeschwindigkeiten von Zyklonen auf die Küstenüberflutung. Die Ergebnisse deuten darauf hin, dass das Vertreibungsrisiko durch die Gesamtwirkung des Klimawandels auf Küstenüberschwemmungen um 3,1 bis 3,5 % gestiegen ist, wobei die Auswirkungen der zunehmenden Windgeschwindigkeit der dominierende Faktor sind. Zusammenfassend zeigt diese Arbeit die Potentiale und Herausforderungen der Modellierung von hochwasserbedingten Vertreibungsrisiken auf. Während diese Arbeit die Sensitivität der globalen Hochwassermodellierung in Bezug auf die Wahl der Eingabedaten untersucht, ergeben sich neue Fragen, wie die Reproduktion von Wiederkehrintervallen und die Darstellung von Schutzniveaus effektiv verbessert werden kann. Die Ergebnisse liefern nützliche Informationen für Risikobewertungen, effektive humanitäre Hilfe und Katastrophenhilfe. Die Studie zur Auswirkungs-Attribution ist ein erster Schritt zur Bewertung der Effekte der globalen Erwärmung auf das Vertreibungsrisiko und führt zu neuen Forschungsherausforderungen, z. B. zur Kopplung von Fluss- und Küstenhochwassermodellen oder zur Untersuchung anderer Gefahrenarten. Diese Arbeit ist eine der ersten, die das durch Überschwemmungen verursachte Vertreibungsrisiko aus einer globalen Perspektive heraus betrachtet. Die Ergebnisse motivieren dazu, die globale Hochwassermodellierungskette weiterzuentwickeln, um unser Verständnis der Vertreibungsvulnerabilität und der Auswirkungen der globalen Erderwärmung zu vertiefen. KW - displacement KW - flooding KW - remote sensing KW - vulnerability KW - global flood model KW - Vertreibung KW - Überschwemmungen KW - Fernerkundung KW - Vulnerabilität KW - globales Überschwemmungsmodell Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-609293 ER -