TY - JOUR A1 - Zeng, Ting A1 - Leimkühler, Silke A1 - Wollenberger, Ulla A1 - Fourmond, Vincent T1 - Transient Catalytic Voltammetry of Sulfite Oxidase Reveals Rate Limiting Conformational Changes JF - Journal of the American Chemical Society N2 - Sulfite oxidases are metalloenzymes that oxidize sulfite to sulfate at a molybdenum active site. In vertebrate sulfite oxidases, the electrons generated at the Mo center are transferred to an external electron acceptor via a heme domain, which can adopt two conformations: a “closed” conformation, suitable for internal electron transfer, and an “open” conformation suitable for intermolecular electron transfer. This conformational change is an integral part of the catalytic cycle. Sulfite oxidases have been wired to electrode surfaces, but their immobilization leads to a significant decrease in their catalytic activity, raising the question of the occurrence of the conformational change when the enzyme is on an electrode. We recorded and quantitatively modeled for the first time the transient response of the catalytic cycle of human sulfite oxidase immobilized on an electrode. We show that conformational changes still occur on the electrode, but at a lower rate than in solution, which is the reason for the decrease in activity of sulfite oxidases upon immobilization. Y1 - 2017 U6 - https://doi.org/10.1021/jacs.7b05480 SN - 0002-7863 VL - 139 SP - 11559 EP - 11567 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Mor, Selene A1 - Herzog, Marc A1 - Golez, Denis A1 - Werner, Philipp A1 - Eckstein, Martin A1 - Katayama, Naoyuki A1 - Nohara, Minoru A1 - Takagi, Hide A1 - Mizokawa, Takashi A1 - Monney, Claude A1 - Staehler, Julia T1 - Ultrafast Electronic Band Gap Control in an Excitonic Insulator JF - Physical review letters N2 - We report on the nonequilibrium dynamics of the electronic structure of the layered semiconductor Ta2NiSe5 investigated by time-and angle-resolved photoelectron spectroscopy. We show that below the critical excitation density of F-C = 0.2 mJ cm(-2), the band gap narrows transiently, while it is enhanced above FC. Hartree-Fock calculations reveal that this effect can be explained by the presence of the low-temperature excitonic insulator phase of Ta2NiSe5, whose order parameter is connected to the gap size. This work demonstrates the ability to manipulate the band gap of Ta2NiSe5 with light on the femtosecond time scale. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevLett.119.086401 SN - 0031-9007 SN - 1079-7114 VL - 119 SP - 11559 EP - 11567 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Ninaus, Manuel A1 - Moeller, Korbinian A1 - Kaufmann, Liane A1 - Fischer, Martin H. A1 - Nuerk, Hans-Christoph A1 - Wood, Guilherme T1 - Cognitive Mechanisms Underlying Directional and Non-directional Spatial-Numerical Associations across the Lifespan JF - Frontiers in psychology N2 - There is accumulating evidence suggesting an association of numbers with physical space. However, the origin of such spatial-numerical associations (SNAs) is still debated. In the present study we investigated the development of two SNAs in a cross-sectional study involving children, young and middle-aged adults as well as the elderly: (1) the SNARC (spatial-numerical association of response codes) effect, reflecting a directional SNA; and (2) the numerical bisection bias in a line bisection task with numerical flankers. Results revealed a consistent SNARC effect in all age groups that continuously increased with age. In contrast, a numerical bisection bias was only observed for children and elderly participants, implying an U-shaped distribution of this bias across age groups. Additionally, individual SNARC effects and numerical bisection biases did not correlate significantly. We argue that the SNARC effect seems to be influenced by longer-lasting experiences of cultural constraints such as reading and writing direction and may thus reflect embodied representations. Contrarily, the numerical bisection bias may originate from insufficient inhibition of the semantic influence of irrelevant numerical flankers, which should be more pronounced in children and elderly people due to development and decline of cognitive control, respectively. As there is an ongoing debate on the origins of SNAs in general and the SNARC effect in particular, the present results are discussed in light of these differing accounts in an integrative approach. However, taken together, the present pattern of results suggests that different cognitive mechanisms underlie the SNARC effect and the numerical bisection bias. KW - SNARC effect KW - spatial-numerical bias KW - line bisection task KW - cognitive development KW - aging Y1 - 2017 U6 - https://doi.org/10.3389/fpsyg.2017.01421 SN - 1664-1078 VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Negi, Sanjay S. A1 - Paul, Ajay A1 - Cesca, Simone A1 - Kamal, A1 - Kriegerowski, Marius A1 - Mahesh, P. A1 - Gupta, Sandeep T1 - Crustal velocity structure and earthquake processes of Garhwal-Kumaun Himalaya: Constraints from regional waveform inversion and array beam modeling JF - Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth N2 - In order to understand present day earthquake kinematics at the Indian plate boundary, we analyse seismic broadband data recorded between 2007 and 2015 by the regional network in the Garhwal-Kumaun region, northwest Himalaya. We first estimate a local 1-D velocity model for the computation of reliable Green's functions, based on 2837 P-wave and 2680 S-wave arrivals from 251 well located earthquakes. The resulting 1-D crustal structure yields a 4-layer velocity model down to the depths of 20 km. A fifth homogeneous layer extends down to 46 km, constraining the Moho using travel-time distance curve method. We then employ a multistep moment tensor (MT) inversion algorithm to infer seismic moment tensors of 11 moderate earthquakes with Mw magnitude in the range 4.0–5.0. The method provides a fast MT inversion for future monitoring of local seismicity, since Green's functions database has been prepared. To further support the moment tensor solutions, we additionally model P phase beams at seismic arrays at teleseismic distances. The MT inversion result reveals the presence of dominant thrust fault kinematics persisting along the Himalayan belt. Shallow low and high angle thrust faulting is the dominating mechanism in the Garhwal-Kumaun Himalaya. The centroid depths for these moderate earthquakes are shallow between 1 and 12 km. The beam modeling result confirm hypocentral depth estimates between 1 and 7 km. The updated seismicity, constrained source mechanism and depth results indicate typical setting of duplexes above the mid crustal ramp where slip is confirmed along out-of-sequence thrusting. The involvement of Tons thrust sheet in out-of-sequence thrusting indicate Tons thrust to be the principal active thrust at shallow depth in the Himalayan region. Our results thus support the critical taper wedge theory, where we infer the microseismicity cluster as a result of intense activity within the Lesser Himalayan Duplex (LHD) system. KW - Critical taper wedge KW - Lesser Himalayan Duplex KW - Out-of-sequence thrust Y1 - 2017 U6 - https://doi.org/10.1016/j.tecto.2017.05.007 SN - 0040-1951 SN - 1879-3266 VL - 712 SP - 45 EP - 63 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Goetz, Klaus-Peter A1 - Chmielewski, Frank M. A1 - Goedeke, Kristin A1 - Wolf, Kristine A1 - Jander, Elisabeth A1 - Sievers, Steven A1 - Homann, Thomas A1 - Huschek, Gerd A1 - Rawel, Harshadrai Manilal T1 - Assessment of amino acids during winter rest and ontogenetic development in sweet cherry buds (Prunus avium. L.) JF - Scientia horticulturae : an international journal sponsored by the International Society for Horticultural Science N2 - This study examined changes in sweet cherry buds of ‘Summit’ cultivar in four seasons (2011/12–2014/15) with respect to the nitrogen (N) content and the profile of eight free amino acids (asparagine (Asn), aspartic acid (Asp), isoleucine (Ile), glutamine (Gln), glutamic acid (Glu), arginine (Arg), alanine (Ala), histidine (His)). The presented results are to our knowledge the first under natural conditions in fruit tree orchards with a high temporal resolution from the dormant stage until cluster development. The N content in the buds from October, during endo- and ecodormancy until the beginning of ontogenetic development was a relatively stable parameter in each of the four seasons. The N accumulation into the buds began after ‘swollen bud’ and significant differences were visible at ‘green tip’ with an N content of 3.24, 3.12, 3.08, 2.40 which increased markedly to the mean of ‘tight’ and ‘open cluster’ by 3.77%, 3.78%, 3.44% and 3.10% in 2012–2015, respectively. In the buds, levels of asparagine were higher (up to 44 mg g−1 DW−1) than aspartic acid (up to 2 mg g−1 DW−1) and aspartic acid higher than isoleucine (up to 0.83 mg g−1 DW−1). Levels of glutamine were higher (up to 25 mg g−1 DW−1) than glutamic acid (up to 20 mg g−1 DW−1). The course of the arginine content was higher in 2011/12 compared to 2012/13, 2013/14 and 2014/15 which showed only slight differences. The alanine content in the buds was denoted in the four seasons only by relatively minor changes. The histidine content was higher in 2011/12 and 2012/13 compared to 2013/14 and 2014/15 which showed a comparable pattern. For 6 amino acids (Asn, Asp, Ile, Glu, Arg, Ala), the highest content was observed in 2012/13, the warmest period between swollen bud and open cluster. However in 2014/15, the season with the lowest mean temperature of 8.8 °C, only the content of Gln was the lowest. It was not possible to explain any seasonal differences in the amino acid content by environmental factors (air temperature) on the basis of few seasons. From none of the measured free amino acids could a clear determination of the date of endodormancy release (t1) or the beginning of the ontogenetic development (t1*) be derived. Therefore, these amino acids are no suitable markers to improve phenological models for the beginning of cherry blossom. KW - Amino acids KW - Flower buds KW - Prunus avium L. KW - Dormancy KW - Ontogenetic development Y1 - 2017 U6 - https://doi.org/10.1016/j.scienta.2017.05.001 SN - 0304-4238 SN - 1879-1018 VL - 222 SP - 102 EP - 110 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Boecker-Schlier, Regina A1 - Holz, Nathalie E. A1 - Hohm, Erika A1 - Zohsel, Katrin A1 - Blomeyer, Dorothea A1 - Buchmann, Arlette F. A1 - Baumeister, Sarah A1 - Wolf, Isabella A1 - Esser, Günter A1 - Schmidt, Martin H. A1 - Meyer-Lindenberg, Andreas A1 - Banaschewski, Tobias A1 - Brandeis, Daniel A1 - Laucht, Manfred T1 - Association between pubertal stage at first drink and neural reward processing in early adulthood JF - Addiction biology N2 - Puberty is a critical time period during human development. It is characterized by high levels of risk-taking behavior, such as increased alcohol consumption, and is accompanied by various neurobiological changes. Recent studies in animals and humans have revealed that the pubertal stage at first drink (PSFD) significantly impacts drinking behavior in adulthood. Moreover, neuronal alterations of the dopaminergic reward system have been associated with alcohol abuse or addiction. This study aimed to clarify the impact of PSFD on neuronal characteristics of reward processing linked to alcohol-related problems. One hundred sixty-eight healthy young adults from a prospective study covering 25 years participated in a monetary incentive delay task measured with simultaneous EEG-fMRI. PSFD was determined according to the age at menarche or Tanner stage of pubertal development, respectively. Alcohol-related problems in early adulthood were assessed with the Alcohol Use Disorder Identification Test (AUDIT). During reward anticipation, decreased fMRI activation of the frontal cortex and increased preparatory EEG activity (contingent negative variation) occurred with pubertal compared to postpubertal first alcohol intake. Moreover, alcohol-related problems during early adulthood were increased in pubertal compared to postpubertal beginners, which was mediated by neuronal activation of the right medial frontal gyrus. At reward delivery, increased fMRI activation of the left caudate and higher feedback-related EEG negativity were detected in pubertal compared to postpubertal beginners. Together with animal findings, these results implicate PSFD as a potential modulator of psychopathology, involving altered reward anticipation. Both PSFD timing and reward processing might thus be potential targets for early prevention and intervention. KW - alcohol-related problems KW - electroencephalography KW - functional magnetic resonance imaging KW - puberty KW - reward processing Y1 - 2017 U6 - https://doi.org/10.1111/adb.12413 SN - 1355-6215 SN - 1369-1600 VL - 22 SP - 1402 EP - 1415 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Witt, Barbara A1 - Meyer, Sören A1 - Ebert, Franziska A1 - Francesconi, Kevin A. A1 - Schwerdtle, Tanja T1 - Toxicity of two classes of arsenolipids and their water-soluble metabolites in human differentiated neurons JF - Archives of toxicology : official journal of EUROTOX N2 - Arsenolipids are lipid-soluble organoarsenic compounds, mainly occurring in marine organisms, with arsenic-containing hydrocarbons (AsHCs) and arsenic-containing fatty acids (AsFAs) representing two major subgroups. Recently, toxicity studies of several arsenolipids showed a high cytotoxic potential of those arsenolipids in human liver and bladder cells. Furthermore, feeding studies with Drosophila melanogaster indicated an accumulation of arsenolipids in the fruit fly’s brain. In this study, the neurotoxic potential of three AsHCs, two AsFAs and three metabolites (dimethylarsinic acid, thio/oxo-dimethylarsenopropanoic acid) was investigated in comparison to the toxic reference arsenite (iAsIII) in fully differentiated human brain cells (LUHMES cells). Thereby, in the case of AsHCs both the cell number and cell viability were reduced in a low micromolar concentration range comparable to iAsIII, while AsFAs and the applied metabolites were less toxic. Mechanistic studies revealed that AsHCs reduced the mitochondrial membrane potential, whereas neither iAsIII nor AsFAs had an impact. Furthermore, neurotoxic mechanisms were investigated by examining the neuronal network. Here, AsHCs massively disturbed the neuronal network and induced apoptotic effects, while iAsIII and AsFAs showed comparatively lesser effects. Taking into account the substantial in vitro neurotoxic potential of the AsHCs and the fact that they could transfer across the physiological barriers of the brain, a neurotoxic potential in vivo for the AsHCs cannot be excluded and needs to be urgently characterized. KW - Arsenolipids KW - Neurons KW - Cytotoxicity KW - Neurotoxicity KW - Arsenic-containing hydrocarbons KW - Arsenic-containing fatty acids Y1 - 2017 U6 - https://doi.org/10.1007/s00204-017-1933-x SN - 0340-5761 SN - 1432-0738 VL - 91 SP - 3121 EP - 3134 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Eggers, Fabian A1 - Lovelace, Kathi J. A1 - Kraft, Frederik T1 - Fostering creativity through critical thinking: The case of business start-up simulations JF - Creativity and innovation management N2 - Research suggests a positive link between critical thinking and creativity. However, this relationship has not been measured in an empirical study. This study aims to explore whether critical thinking can serve to enhance creativity and whether creativity positively mediates the relationship between critical thinking and business performance. In this study, we analyse these relationships within the entrepreneurial context of a web-based business start-up simulation. We examined data from 26 teams of three to four senior business students and found partial support for our hypotheses. Critical thinking positively influenced creativity, measured as the total number of unique product designs. Creativity (unique product designs) also positively mediated the link between critical thinking and performance. This effect, however, did not exist when creativity was assessed through advertisement designs. This research contributes to entrepreneurship and innovation management by demonstrating the importance of critical thinking as a basis for creativity and testing this relationship in a business start-up simulation context. Y1 - 2017 U6 - https://doi.org/10.1111/caim.12225 SN - 0963-1690 SN - 1467-8691 VL - 26 SP - 266 EP - 276 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Leimkühler, Silke T1 - Shared function and moonlighting proteins in molybdenum cofactor biosynthesis JF - Biological chemistry N2 - The biosynthesis of the molybdenum cofactor (Moco) is a highly conserved pathway in bacteria, archaea and eukaryotes. The molybdenum atom in Moco-containing enzymes is coordinated to the dithiolene group of a tricyclic pyranopterin monophosphate cofactor. The biosynthesis of Moco can be divided into three conserved steps, with a fourth present only in bacteria and archaea: (1) formation of cyclic pyranopterin monophosphate, (2) formation of molybdopterin (MPT), (3) insertion of molybdenum into MPT to form Mo-MPT, and (4) additional modification of Mo-MPT in bacteria with the attachment of a GMP or CMP nucleotide, forming the dinucleotide variants of Moco. While the proteins involved in the catalytic reaction of each step of Moco biosynthesis are highly conserved among the Phyla, a surprising link to other cellular pathways has been identified by recent discoveries. In particular, the pathways for FeS cluster assembly and thio-modifications of tRNA are connected to Moco biosynthesis by sharing the same protein components. Further, proteins involved in Moco biosynthesis are not only shared with other pathways, but additionally have moonlighting roles. This review gives an overview of Moco biosynthesis in bacteria and humans and highlights the shared function and moonlighting roles of the participating proteins. KW - FeS cluster KW - molybdenum cofactor KW - molybdo-enzymes KW - moonlighting KW - sulfur transfer KW - tRNA thiolation Y1 - 2017 U6 - https://doi.org/10.1515/hsz-2017-0110 SN - 1431-6730 SN - 1437-4315 VL - 398 SP - 1009 EP - 1026 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Markovic, Danijela A1 - Carrizo, Savrina F. A1 - Kaercher, Oskar A1 - Walz, Ariane A1 - David, Jonathan N. W. T1 - Vulnerability of European freshwater catchments to climate change JF - Global change biology N2 - Climate change is expected to exacerbate the current threats to freshwater ecosystems, yet multifaceted studies on the potential impacts of climate change on freshwater biodiversity at scales that inform management planning are lacking. The aim of this study was to fill this void through the development of a novel framework for assessing climate change vulnerability tailored to freshwater ecosystems. The three dimensions of climate change vulnerability are as follows: (i) exposure to climate change, (ii) sensitivity to altered environmental conditions and (iii) resilience potential. Our vulnerability framework includes 1685 freshwater species of plants, fishes, molluscs, odonates, amphibians, crayfish and turtles alongside key features within and between catchments, such as topography and connectivity. Several methodologies were used to combine these dimensions across a variety of future climate change models and scenarios. The resulting indices were overlaid to assess the vulnerability of European freshwater ecosystems at the catchment scale (18 783 catchments). The Balkan Lakes Ohrid and Prespa and Mediterranean islands emerge as most vulnerable to climate change. For the 2030s, we showed a consensus among the applied methods whereby up to 573 lake and river catchments are highly vulnerable to climate change. The anthropogenic disruption of hydrological habitat connectivity by dams is the major factor reducing climate change resilience. A gap analysis demonstrated that the current European protected area network covers <25% of the most vulnerable catchments. Practical steps need to be taken to ensure the persistence of freshwater biodiversity under climate change. Priority should be placed on enhancing stakeholder cooperation at the major basin scale towards preventing further degradation of freshwater ecosystems and maintaining connectivity among catchments. The catchments identified as most vulnerable to climate change provide preliminary targets for development of climate change conservation management and mitigation strategies. KW - catchment connectivity KW - climate change KW - exposure KW - freshwater biodiversity KW - gap analysis KW - resilience KW - sensitivity KW - vulnerability Y1 - 2017 U6 - https://doi.org/10.1111/gcb.13657 SN - 1354-1013 SN - 1365-2486 VL - 23 SP - 3567 EP - 3580 PB - Wiley CY - Hoboken ER -