TY - JOUR A1 - Putra, Sulistyo E. Dwi A1 - Reichetzeder, Christoph A1 - Meixner, Martin A1 - Liere, Karsten A1 - Slowinski, Torsten A1 - Hocher, Berthold T1 - DNA methylation of the glucocorticoid receptor gene promoter in the placenta is associated with blood pressure regulation in human pregnancy JF - Journal of hypertension N2 - Background: Blood pressure (BP) regulation during pregnancy is influenced by hormones of placental origin. It was shown that the glucocorticoid system is altered in hypertensive pregnancy disorders such as preeclampsia. Epigenetic mechanism might influence the activity of genes involved in placental hormone/hormone receptor synthesis/action during pregnancy. Method: In the current study, we analyzed the association of 50-C-phosphate-G-30 (CpG) site methylation of different glucocorticoid receptor gene (NR3C1) promoter regions with BP during pregnancy. The study was performed as a nested case-control study (n = 80) out of 1045 mother/ child pairs from the Berlin Birth Cohort. Placental DNA was extracted and bisulfite converted. Nested PCR products from six NR3C1 proximal promoter regions [glucocorticoid receptor gene promotor region B (GR-1B), C (GR-1C), D (GR-1D), E (GR-1E), F (GR-1F), and H (GR-1H)] were analyzed by next generation sequencing. Results: NR3C1 promoter regions GR-1D and GR-1E had a much higher degree of DNA methylation as compared to GR-1B, GR-1F or GR-1H when analyzing the entire study population. Comparison of placental NR3C1 CpG site methylation among hypotensive, normotensive and hypertensive mothers revealed several differently methylated CpG sites in the GR-1F promoter region only. Both hypertension and hypotension were associated with increased DNA methylation of GR-1F CpG sites. These associations were independent of confounding factors, such as family history of hypertension, smoking status before pregnancy and prepregnancy BMI. Assessment of placental glucocorticoid receptor expression by western blot showed that observed DNA methylation differences were not associated with altered levels of placental glucocorticoid receptor expression. However, correlation matrices of all NR3C1 proximal promoter regions demonstrated different correlation patterns of intraregional and interregional DNA methylation in the three BP groups, putatively indicating altered transcriptional control of glucocorticoid receptor isoforms. Conclusion: Our study provides evidence of an independent association between placental NR3C1 proximal promoter methylation and maternal BP. Furthermore, we observed different patterns of NR3C1 promoter methylation in normotensive, hypertensive and hypotensive pregnancy. KW - DNA methylation KW - epigenetics KW - glucocorticoid receptor KW - hypertension KW - hypotension KW - NR3C1 gene KW - placenta KW - pregnancy Y1 - 2017 U6 - https://doi.org/10.1097/HJH.0000000000001450 SN - 0263-6352 SN - 1473-5598 VL - 35 SP - 2276 EP - 2286 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Berry, Scott A1 - Rosa, Stefanie A1 - Howard, Martin A1 - Buhler, Marc A1 - Dean, Caroline T1 - Disruption of an RNA-binding hinge region abolishes LHP1-mediated epigenetic repression JF - Genes & Development N2 - Epigenetic maintenance of gene repression is essential for development. Polycomb complexes are central to this memory, but many aspects of the underlying mechanism remain unclear. LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) binds Polycomb-deposited H3K27me3 and is required for repression of many Polycomb target genes in Arabidopsis. Here we show that LHP1 binds RNA in vitro through the intrinsically disordered hinge region. By independently perturbing the RNA-binding hinge region and H3K27me3 (trimethylation of histone H3 at Lys27) recognition, we found that both facilitate LHP1 localization and H3K27me3 maintenance. Disruption of the RNAbinding hinge region also prevented formation of subnuclear foci, structures potentially important for epigenetic repression. KW - chromatin KW - epigenetics KW - plant biology KW - Polycomb KW - RNA Y1 - 2017 U6 - https://doi.org/10.1101/gad.305227.117 SN - 0890-9369 SN - 1549-5477 VL - 31 SP - 2115 EP - 2120 PB - Cold Spring Harbor Laboratory Press CY - Cold Spring Harbor, NY ER -