TY - JOUR A1 - Gonzalez Manrique, Sergio Javier A1 - Kuckein, Christoph A1 - Collados, M. A1 - Denker, Carsten A1 - Solanki, S. K. A1 - Gomory, P. A1 - Verma, Meetu A1 - Balthasar, H. A1 - Lagg, A. A1 - Diercke, Andrea T1 - Temporal evolution of arch filaments as seen in He I 10 830 angstrom JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. We study the evolution of an arch filament system (AFS) and of its individual arch filaments to learn about the processes occurring in them. Methods. We observed the AFS at the GREGOR solar telescope on Tenerife at high cadence with the very fast spectroscopic mode of the GREGOR Infrared Spectrograph (GRIS) in the He I 10 830 angstrom spectral range. The He I triplet profiles were fitted with analytic functions to infer line-of-sight (LOS) velocities to follow plasma motions within the AFS. Results. We tracked the temporal evolution of an individual arch filament over its entire lifetime, as seen in the He I 10 830 angstrom triplet. The arch filament expanded in height and extended in length from 13 ' to 21 '. The lifetime of this arch filament is about 30 min. About 11 min after the arch filament is seen in He I, the loop top starts to rise with an average Doppler velocity of 6 km s(-1). Only two minutes later, plasma drains down with supersonic velocities towards the footpoints reaching a peak velocity of up to 40 km s(-1) in the chromosphere. The temporal evolution of He I 10 830 angstrom profiles near the leading pore showed almost ubiquitous dual red components of the He I triplet, indicating strong downflows, along with material nearly at rest within the same resolution element during the whole observing time. KW - Sun: chromosphere KW - Sun: activity KW - methods: observational KW - methods: data analysis KW - techniques: high angular resolution Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201832684 SN - 1432-0746 VL - 617 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Louis, Rohan E. A1 - Puschmann, Klaus G. A1 - Kliem, Bernhard A1 - Balthasar, Horst A1 - Denker, Carsten T1 - Sunspot splitting triggering an eruptive flare JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. We investigate how the splitting of the leading sunspot and associated flux emergence and cancellation in active region NOAA 11515 caused an eruptive M5.6 flare on 2012 July 2. Methods. Continuum intensity, line-of-sight magnetogram, and dopplergram data of the Helioseismic and Magnetic Imager were employed to analyse the photospheric evolution. Filtergrams in H alpha and He I 10830 angstrom of the Chromospheric Telescope at the Observatorio del Teide, Tenerife, track the evolution of the flare. The corresponding coronal conditions were derived from 171 angstrom and 304 angstrom images of the Atmospheric Imaging Assembly. Local correlation tracking was utilized to determine shear flows. Results. Emerging flux formed a neutral line ahead of the leading sunspot and new satellite spots. The sunspot splitting caused a long-lasting flow towards this neutral line, where a filament formed. Further flux emergence, partly of mixed polarity, as well as episodes of flux cancellation occurred repeatedly at the neutral line. Following a nearby C-class precursor flare with signs of interaction with the filament, the filament erupted nearly simultaneously with the onset of the M5.6 flare and evolved into a coronal mass ejection. The sunspot stretched without forming a light bridge, splitting unusually fast (within about a day, complete approximate to 6 h after the eruption) in two nearly equal parts. The front part separated strongly from the active region to approach the neighbouring active region where all its coronal magnetic connections were rooted. It also rotated rapidly (by 4.9 degrees h(-1)) and caused significant shear flows at its edge. Conclusions. The eruption resulted from a complex sequence of processes in the (sub-)photosphere and corona. The persistent flows towards the neutral line likely caused the formation of a flux rope that held the filament. These flows, their associated flux cancellation, the emerging flux, and the precursor flare all contributed to the destabilization of the flux rope. We interpret the sunspot splitting as the separation of two flux bundles differently rooted in the convection zone and only temporarily joined in the spot. This explains the rotation as the continued rise of the separating flux, and it implies that at least this part of the sunspot was still connected to its roots deep in the convection zone. KW - Sun: flares KW - sunspots KW - Sun: photosphere KW - Sun: chromosphere KW - techniques: photometric Y1 - 2014 U6 - https://doi.org/10.1051/0004-6361/201321106 SN - 0004-6361 SN - 1432-0746 VL - 562 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Denker, Carsten A1 - Kuckein, Christoph A1 - Verma, Meetu A1 - Manrique Gonzalez, Sergio Javier Gonzalez A1 - Diercke, Andrea A1 - Enke, Harry A1 - Klar, Jochen A1 - Balthasar, Horst A1 - Louis, Rohan E. A1 - Dineva, Ekaterina T1 - High-cadence Imaging and Imaging Spectroscopy at the GREGOR Solar Telescope-A Collaborative Research Environment for High-resolution Solar Physics JF - The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series N2 - In high-resolution solar physics, the volume and complexity of photometric, spectroscopic, and polarimetric ground-based data significantly increased in the last decade, reaching data acquisition rates of terabytes per hour. This is driven by the desire to capture fast processes on the Sun and the necessity for short exposure times "freezing" the atmospheric seeing, thus enabling ex post facto image restoration. Consequently, large-format and high-cadence detectors are nowadays used in solar observations to facilitate image restoration. Based on our experience during the "early science" phase with the 1.5 m GREGOR solar telescope (2014–2015) and the subsequent transition to routine observations in 2016, we describe data collection and data management tailored toward image restoration and imaging spectroscopy. We outline our approaches regarding data processing, analysis, and archiving for two of GREGOR's post-focus instruments (see http://gregor.aip.de), i.e., the GREGOR Fabry–Pérot Interferometer (GFPI) and the newly installed High-Resolution Fast Imager (HiFI). The heterogeneous and complex nature of multidimensional data arising from high-resolution solar observations provides an intriguing but also a challenging example for "big data" in astronomy. The big data challenge has two aspects: (1) establishing a workflow for publishing the data for the whole community and beyond and (2) creating a collaborative research environment (CRE), where computationally intense data and postprocessing tools are colocated and collaborative work is enabled for scientists of multiple institutes. This requires either collaboration with a data center or frameworks and databases capable of dealing with huge data sets based on virtual observatory (VO) and other community standards and procedures. KW - astronomical databases KW - methods: data analysis KW - Sun: chromosphere KW - Sun: photosphere KW - techniques: image processing KW - techniques: spectroscopic Y1 - 2018 U6 - https://doi.org/10.3847/1538-4365/aab773 SN - 0067-0049 SN - 1538-4365 VL - 236 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Gonzalez Manrique, Sergio Javier A1 - Kuckein, Christoph A1 - Pastor Yabar, A. A1 - Collados Vera, M. A1 - Denker, Carsten A1 - Fischer, C. E. A1 - Gömöry, P. A1 - Diercke, Andrea A1 - Gonzalez, N. Bello A1 - Schlichenmaier, R. A1 - Balthasar, H. A1 - Berkefeld, T. A1 - Feller, A. A1 - Hoch, S. A1 - Hofmann, A. A1 - Kneer, F. A1 - Lagg, A. A1 - Nicklas, H. A1 - Orozco Suarez, D. A1 - Schmidt, D. A1 - Schmidt, W. A1 - Sigwarth, M. A1 - Sobotka, M. A1 - Solanki, S. K. A1 - Soltau, D. A1 - Staude, J. A1 - Strassmeier, Klaus G. A1 - Verma, Meetu A1 - Volkmer, R. A1 - von der Lühe, O. A1 - Waldmann, T. T1 - Fitting peculiar spectral profiles in He I 10830 angstrom absorption features JF - Astronomische Nachrichten = Astronomical notes N2 - The new generation of solar instruments provides better spectral, spatial, and temporal resolution for a better understanding of the physical processes that take place on the Sun. Multiple-component profiles are more commonly observed with these instruments. Particularly, the He i 10830 triplet presents such peculiar spectral profiles, which give information on the velocity and magnetic fine structure of the upper chromosphere. The purpose of this investigation is to describe a technique to efficiently fit the two blended components of the He i 10830 triplet, which are commonly observed when two atmospheric components are located within the same resolution element. The observations used in this study were taken on 2015 April 17 with the very fast spectroscopic mode of the GREGOR Infrared Spectrograph (GRIS) attached to the 1.5-m GREGOR solar telescope, located at the Observatorio del Teide, Tenerife, Spain. We apply a double-Lorentzian fitting technique using Levenberg-Marquardt least-squares minimization. This technique is very simple and much faster than inversion codes. Line-of-sight Doppler velocities can be inferred for a whole map of pixels within just a few minutes. Our results show sub-and supersonic downflow velocities of up to 32 km s(-1) for the fast component in the vicinity of footpoints of filamentary structures. The slow component presents velocities close to rest. (C) 2016 WILEY-VCH Verlag GmbH& Co. KGaA, Weinheim KW - Sun: chromosphere KW - methods: data analysis KW - techniques: spectroscopic KW - line: profiles Y1 - 2016 U6 - https://doi.org/10.1002/asna.201512433 SN - 0004-6337 SN - 1521-3994 VL - 337 SP - 1057 EP - 1063 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Ni, Lei A1 - Kliem, Bernhard A1 - Lin, Jun A1 - Wu, Ning T1 - Fast magnetic reconnection in the solar chromosphere mediated by theplasmoid instability JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Magnetic reconnection in the partially ionized solar chromosphere is studied in 2.5 dimensional magnetohydrodynamic simulations including radiative cooling and ambipolar diffusion. A Harris current sheet with and without a guide field is considered. Characteristic values of the parameters in the middle chromosphere imply a high magnetic Reynolds number of similar to 10(6)-10(7) in the present simulations. Fast magnetic reconnection then develops as a consequence of the plasmoid instability without the need to invoke anomalous resistivity enhancements. Multiple levels of the instability are followed as it cascades to smaller scales, which approach the ion inertial length. The reconnection rate, normalized to the asymptotic values of magnetic field and Alfven velocity in the inflow region, reaches values in the range similar to 0.01-0.03 throughout the cascading plasmoid formation and for zero as well as for strong guide field. The outflow velocity reaches approximate to 40 km s(-1). Slow-mode shocks extend from the X-points, heating the plasmoids up to similar to 8 x 10(4) K. In the case of zero guide field, the inclusion of both ambipolar diffusion and radiative cooling causes a rapid thinning of the current sheet (down to similar to 30 m) and early formation of secondary islands. Both of these processes have very little effect on the plasmoid instability for a strong guide field. The reconnection rates, temperature enhancements, and upward outflow velocities from the vertical current sheet correspond well to their characteristic values in chromospheric jets. KW - magnetic reconnection KW - magnetohydrodynamics (MHD) KW - radiation: dynamics KW - Sun: activity KW - Sun: chromosphere Y1 - 2015 U6 - https://doi.org/10.1088/0004-637X/799/1/79 SN - 0004-637X SN - 1538-4357 VL - 799 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Diercke, Andrea A1 - Kuckein, Christoph A1 - Denker, Carsten T1 - Dynamics and connectivity of an extended arch filament system JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. In this study, we analyzed a filament system, which expanded between moving magnetic features (MMFs) of a decaying sunspot and opposite flux outside of the active region from the nearby quiet-Sun network. This configuration deviated from a classical arch filament system (AFS), which typically connects two pores in an emerging flux region. Thus, we called this system an extended AFS. We contrasted classical and extended AFSs with an emphasis on the complex magnetic structure of the latter. Furthermore, we examined the physical properties of the extended AFS and described its dynamics and connectivity. Methods. The extended AFS was observed with two instruments at the Dunn Solar Telescope (DST). The Rapid Oscillations in the Solar Atmosphere (ROSA) imager provided images in three different wavelength regions, which covered the dynamics of the extended AFS at different atmospheric heights. The Interferometric Bidimensional Spectropolarimeter (IBIS) provided spectroscopic Ha data and spectropolarimetric data that was obtained in the near-infrared (NIR) Call lambda 8542 angstrom line. We derived the corresponding line-of-sight (LOS) velocities and used He II lambda 304 angstrom extreme ultraviolet (EUV) images of the Atmospheric Imaging Assembly (AIA) and LOS magnetograms of the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) as context data. Results. The NIR Call Stokes-V maps are not suitable to definitively define a clear polarity inversion line and to classify this chromospheric structure. Nevertheless, this unusual AFS connects the MMFs of a decaying sunspot with the network field. At the southern footpoint, we measured that the flux decreases over time. We find strong downflow velocities at the footpoints of the extended AFS, which increase in a time period of 30 min. The velocities are asymmetric at both footpoints with higher velocities at the southern footpoint. An EUV brigthening appears in one of the arch filaments, which migrates from the northern footpoint toward the southern one. This activation likely influences the increasing redshift at the southern footpoint. Conclusions. The extended AFS exhibits a similar morphology as classical AFSs, for example, threaded filaments of comparable length and width. Major differences concern the connection from MMFs around the sunspot with the flux of the neighboring quietSun network, converging footpoint motions, and longer lifetimes of individual arch filaments of about one hour, while the extended AFS is still very dynamic. KW - methods: observational KW - Sun: filaments, prominences KW - Sun: activity KW - techniques: image processing KW - Sun: chromosphere Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201935583 SN - 1432-0746 VL - 629 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Diercke, Andrea A1 - Kuckein, Christoph A1 - Verma, Meetu A1 - Denker, Carsten T1 - Counter-streaming flows in a giant quiet-Sun filament observed in the extreme ultraviolet JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. The giant solar filament was visible on the solar surface from 2011 November 8-23. Multiwavelength data from the Solar Dynamics Observatory (SDO) were used to examine counter-streaming flows within the spine of the filament. Methods. We use data from two SDO instruments, the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI), covering the whole filament, which stretched over more than half a solar diameter. H alpha images from the Kanzelhohe Solar Observatory (KSO) provide context information of where the spine of the filament is defined and the barbs are located. We apply local correlation tracking (LCT) to a two-hour time series on 2011 November 16 of the AIA images to derive horizontal flow velocities of the filament. To enhance the contrast of the AIA images, noise adaptive fuzzy equalization (NAFE) is employed, which allows us to identify and quantify counter-streaming flows in the filament. We observe the same cool filament plasma in absorption in both H alpha and EUV images. Hence, the counter-streaming flows are directly related to this filament material in the spine. In addition, we use directional flow maps to highlight the counter-streaming flows. Results. We detect counter-streaming flows in the filament, which are visible in the time-lapse movies in all four examined AIA wavelength bands (lambda 171 angstrom, lambda 193 angstrom, lambda 304 angstrom, and lambda 211 angstrom). In the time-lapse movies we see that these persistent flows lasted for at least two hours, although they became less prominent towards the end of the time series. Furthermore, by applying LCT to the images we clearly determine counter-streaming flows in time series of lambda 171 angstrom and lambda 193 angstrom images. In the lambda 304 angstrom wavelength band, we only see minor indications for counter-streaming flows with LCT, while in the lambda 211 angstrom wavelength band the counter-streaming flows are not detectable with this method. The diverse morphology of the filament in H alpha and EUV images is caused by different absorption processes, i.e., spectral line absorption and absorption by hydrogen and helium continua, respectively. The horizontal flows reach mean flow speeds of about 0.5 km s(-1) for all wavelength bands. The highest horizontal flow speeds are identified in the lambda 171 angstrom band with flow speeds of up to 2.5 km s(-1). The results are averaged over a time series of 90 minutes. Because the LCT sampling window has finite width, a spatial degradation cannot be avoided leading to lower estimates of the flow velocities as compared to feature tracking or Doppler measurements. The counter-streaming flows cover about 15-20% of the whole area of the EUV filament channel and are located in the central part of the spine. Conclusions. Compared to the ground-based observations, the absence of seeing effects in AIA observations reveal counter-streaming flows in the filament even with a moderate image scale of 0 '.6 pixel(-1). Using a contrast enhancement technique, these flows can be detected and quantified with LCT in different wavelengths. We confirm the omnipresence of counter-streaming flows also in giant quiet-Sun filaments. KW - methods: observational KW - Sun: filaments, prominences KW - Sun: activity KW - Sun: chromosphere KW - Sun: corona KW - techniques: image processing Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201730536 SN - 1432-0746 VL - 611 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Kuckein, Christoph A1 - Diercke, Andrea A1 - González Manrique, Sergio Javier A1 - Verma, Meetu A1 - Loehner-Boettcher, Johannes A1 - Socas-Navarro, H. A1 - Balthasar, Horst A1 - Sobotka, M. A1 - Denker, Carsten T1 - Ca II 8542 angstrom brightenings induced by a solar microflare JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. We study small-scale brightenings in Ca II 8542 angstrom line-core images to determine their nature and effect on localized heating and mass transfer in active regions. Methods. High-resolution two-dimensional spectroscopic observations of a solar active region in the near-infrared Ca II 8542 angstrom line were acquired with the GREGOR Fabry-Perot Interferometer attached to the 1.5-m GREGOR telescope. Inversions of the spectra were carried out using the NICOLE code to infer temperatures and line-of-sight (LOS) velocities. Response functions of the Ca II line were computed for temperature and LOS velocity variations. Filtergrams of the Atmospheric Imaging Assembly (AIA) and magnetograms of the Helioseismic and Magnetic Imager (HMI) were coaligned to match the ground-based observations and to follow the Ca II brightenings along all available layers of the atmosphere. Results. We identified three brightenings of sizes up to 2 ' x 2 ' that appeared in the Ca II 8542 angstrom line-core images. Their lifetimes were at least 1.5 min. We found evidence that the brightenings belonged to the footpoints of a microflare (MF). The properties of the observed brightenings disqualified the scenarios of Ellerman bombs or Interface Region Imaging Spectrograph (IRIS) bombs. However, this MF shared some common properties with flaring active-region fibrils or flaring arch filaments (FAFs): (1) FAFs and MFs are both apparent in chromospheric and coronal layers according to the AIA channels; and (2) both show flaring arches with lifetimes of about 3.0-3.5 min and lengths of similar to 20 ' next to the brightenings. The inversions revealed heating by 600 K at the footpoint location in the ambient chromosphere during the impulsive phase. Connecting the footpoints, a dark filamentary structure appeared in the Ca II line-core images. Before the start of the MF, the spectra of this structure already indicated average blueshifts, meaning upward motions of the plasma along the LOS. During the impulsive phase, these velocities increased up to -2.2 km s(-1). The structure did not disappear during the observations. Downflows dominated at the footpoints. However, in the upper photosphere, slight upflows occurred during the impulsive phase. Hence, bidirectional flows are present in the footpoints of the MF. KW - Sun: photosphere KW - Sun: chromosphere KW - Sun: corona KW - Sun: activity KW - techniques: imaging spectroscopy Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201731319 SN - 1432-0746 VL - 608 PB - EDP Sciences CY - Les Ulis ER -