TY - JOUR A1 - Sperlich, Eric A1 - Köckerling, Martin T1 - [Nb6Cl14(pyrazine)(4)], a versatile precursor for ligand-supported hexanuclear niobium cluster compounds: synthesis, characterization, follow-up reactions, and intermolecular interactions JF - Inorganic chemistry N2 - The compound [Nb6Cl14(pyrazine)(4)]center dot 2CH(2)Cl(2) (1) was investigated for its suitability as a starting compound for new ligand-supported hexanuclear niobium cluster compounds. The synthesis, stability to air and increased temperature, solubility and usability for subsequent reactions of 1, and purification and separation of the reaction products are discussed. The compounds with cluster units [Nb6Cl14L4], where L = iso-quinoline N-oxides (2), 1,1-dimethylethylenediamines (3), or thiazoles (4), and [Nb6Cl14(PEt3)(3.76)(Et3PO)(0.24)]-[Nb6Cl14(MeCN)(4)]center dot 4MeCN (5) are presented as follow-up products. The crystal structures of compounds 1-5 are analyzed, and the structures are discussed with respect to their intraand intermolecular bonding situations and crystal packing. In addition to hydrogen bonds and pi-pi interactions, the appearance of chalcogen and halogen bonds and lone pair-pi interactions between Nb-6 cluster units was observed for the first time. KW - Cluster chemistry KW - crystals KW - ligands KW - molecules KW - transition metals Y1 - 2022 U6 - https://doi.org/10.1021/acs.inorgchem.1c03109 SN - 0020-1669 SN - 1520-510X VL - 61 IS - 5 SP - 2409 EP - 2420 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Arya, Pooja A1 - Jelken, Joachim A1 - Lomadze, Nino A1 - Santer, Svetlana A1 - Bekir, Marek T1 - Kinetics of photo-isomerization of azobenzene containing surfactants JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistry N2 - We report on photoisomerization kinetics of azobenzene containing surfactants in aqueous solution. The surfactant molecule consists of a positively charged trimethylammonium bromide head group, a hydrophobic spacer connecting via 6 to 10 CH2 groups to the azobenzene unit, and the hydrophobic tail of 1 and 3CH(2) groups. Under exposure to light, the azobenzene photoisomerizes from more stable trans- to metastable cis-state, which can be switched back either thermally in dark or by illumination with light of a longer wavelength. The surfactant isomerization is described by a kinetic model of a pseudo first order reaction approaching equilibrium, where the intensity controls the rate of isomerization until the equilibrated state. The rate constants of the trans-cis and cis-trans photoisomerization are calculated as a function of several parameters such as wavelength and intensity of light, the surfactant concentration, and the length of the hydrophobic tail. The thermal relaxation rate from cis- to trans-state is studied as well. The surfactant isomerization shows a different kinetic below and above the critical micellar concentration of the trans isomer due to steric hindrance within the densely packed micelle but does not depend on the spacer length. KW - genomic DNA conformation KW - water-interface KW - light photocontrol KW - driven KW - manipulation KW - photoisomerization KW - molecules Y1 - 2020 U6 - https://doi.org/10.1063/1.5135913 SN - 0021-9606 SN - 1089-7690 VL - 152 IS - 2 PB - American Institute of Physics CY - Melville ER -