TY - JOUR A1 - Annunziata, Maria Grazia A1 - Apelt, Federico A1 - Carillo, Petronia A1 - Krause, Ursula A1 - Feil, Regina A1 - Mengin, Virginie A1 - Lauxmann, Martin A. A1 - Koehl, Karin A1 - Nikoloski, Zoran A1 - Stitt, Mark A1 - Lunn, John Edward T1 - Getting back to nature: a reality check for experiments in controlled environments JF - Journal of experimental botany N2 - Irradiance from sunlight changes in a sinusoidal manner during the day, with irregular fluctuations due to clouds, and light-dark shifts at dawn and dusk are gradual. Experiments in controlled environments typically expose plants to constant irradiance during the day and abrupt light-dark transitions. To compare the effects on metabolism of sunlight versus artificial light regimes, Arabidopsis thaliana plants were grown in a naturally illuminated greenhouse around the vernal equinox, and in controlled environment chambers with a 12-h photoperiod and either constant or sinusoidal light profiles, using either white fluorescent tubes or light-emitting diodes (LEDs) tuned to a sunlight-like spectrum as the light source. Rosettes were sampled throughout a 24-h diurnal cycle for metabolite analysis. The diurnal metabolite profiles revealed that carbon and nitrogen metabolism differed significantly between sunlight and artificial light conditions. The variability of sunlight within and between days could be a factor underlying these differences. Pairwise comparisons of the artificial light sources (fluorescent versus LED) or the light profiles (constant versus sinusoidal) showed much smaller differences. The data indicate that energy-efficient LED lighting is an acceptable alternative to fluorescent lights, but results obtained from plants grown with either type of artificial lighting might not be representative of natural conditions. KW - Amino acid KW - Arabidopsis thaliana KW - controlled environment KW - LED lighting KW - visible light spectrum KW - organic acid KW - starch KW - sucrose KW - trehalose 6-phosphate Y1 - 2017 U6 - https://doi.org/10.1093/jxb/erx220 SN - 0022-0957 SN - 1460-2431 VL - 68 SP - 4463 EP - 4477 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Apelt, Federico A1 - Breuer, David A1 - Nikoloski, Zoran A1 - Stitt, Mark A1 - Kragler, Friedrich T1 - Phytotyping(4D): a light-field imaging system for non-invasive and accurate monitoring of spatio-temporal plant growth JF - The plant journal N2 - Integrative studies of plant growth require spatially and temporally resolved information from high-throughput imaging systems. However, analysis and interpretation of conventional two-dimensional images is complicated by the three-dimensional nature of shoot architecture and by changes in leaf position over time, termed hyponasty. To solve this problem, Phytotyping(4D) uses a light-field camera that simultaneously provides a focus image and a depth image, which contains distance information about the object surface. Our automated pipeline segments the focus images, integrates depth information to reconstruct the three-dimensional architecture, and analyses time series to provide information about the relative expansion rate, the timing of leaf appearance, hyponastic movement, and shape for individual leaves and the whole rosette. Phytotyping(4D) was calibrated and validated using discs of known sizes, and plants tilted at various orientations. Information from this analysis was integrated into the pipeline to allow error assessment during routine operation. To illustrate the utility of Phytotyping(4D), we compare diurnal changes in Arabidopsis thaliana wild-type Col-0 and the starchless pgm mutant. Compared to Col-0, pgm showed very low relative expansion rate in the second half of the night, a transiently increased relative expansion rate at the onset of light period, and smaller hyponastic movement including delayed movement after dusk, both at the level of the rosette and individual leaves. Our study introduces light-field camera systems as a tool to accurately measure morphological and growth-related features in plants. Significance Statement Phytotyping(4D) is a non-invasive and accurate imaging system that combines a 3D light-field camera with an automated pipeline, which provides validated measurements of growth, movement, and other morphological features at the rosette and single-leaf level. In a case study in which we investigated the link between starch and growth, we demonstrated that Phytotyping(4D) is a key step towards bridging the gap between phenotypic observations and the rich genetic and metabolic knowledge. KW - plant growth KW - hyponasty KW - 3D imaging KW - light-field camera KW - Arabidopsis thaliana KW - pgm KW - technical advance Y1 - 2015 U6 - https://doi.org/10.1111/tpj.12833 SN - 0960-7412 SN - 1365-313X VL - 82 IS - 4 SP - 693 EP - 706 PB - Wiley-Blackwell CY - Hoboken ER - TY - THES A1 - Apriyanto, Ardha T1 - Analysis of starch metabolism in source and sink tissue of plants T1 - Analyse des Stärkestoffwechsels im Source und Sink Gewebe von Pflanzen N2 - Starch is an essential biopolymer produced by plants. Starch can be made inside source tissue (such as leaves) and sink tissue (such as fruits and tubers). Nevertheless, understanding how starch metabolism is regulated in source and sink tissues is fundamental for improving crop production. Despite recent advances in the understanding of starch and its metabolism, there is still a knowledge gap in the source and sink metabolism. Therefore, this study aimed to summarize the state of the art regarding starch structure and metabolism inside plants. In addition, this study aimed to elucidate the regulation of starch metabolism in the source tissue using the leaves of a model organism, Arabidopsis thaliana, and the sink tissue of oil palm (Elaeis guineensis) fruit as a commercial crop. The research regarding the source tissue will focus on the effect of the blockage of starch degradation on the starch parameter in leaves, especially in those of A. thaliana, which lack both disproportionating enzyme 2 (DPE2) and plastidial glucan phosphorylase 1 (PHS1) (dpe2/phs1). The additional elimination of phosphoglucan water dikinase (PWD), starch excess 4 (SEX4), isoamylase 3 (ISA3), and disproportionating enzyme 1 (DPE1) in the dpe2/phs1 mutant background demonstrates the alteration of starch granule number per chloroplast. This study provides insights into the control mechanism of granule number regulation in the chloroplast. The research regarding the sink tissue will emphasize the relationship between starch metabolism and the lipid metabolism pathway in oil palm fruits. This study was conducted to observe the alteration of starch parameters, metabolite abundance, and gene expression during oil palm fruit development with different oil yields. This study shows that starch and sucrose can be used as biomarkers for oil yield in oil palms. In addition, it is revealed that the enzyme isoforms related to starch metabolism influence the oil production in oil palm fruit. Overall, this thesis presents novel information regarding starch metabolism in the source tissue of A.thaliana and the sink tissue of E.guineensis. The results shown in this thesis can be applied to many applications, such as modifying the starch parameter in other plants for specific needs. N2 - Stärke ist ein unverzichtbares Biopolymer, das von Pflanzen sowohl in den Quellgeweben (sources, z. B. Blätter) als auch in den Senkengeweben (sinks, z. B. Früchten und Knollen) gebildet wird. Daher ist ein profundes Wissen über die Regulation des Stärkestoffwechsel in den source und sink Organen von grundlegender Bedeutung für die Verbesserung der Pflanzenproduktion. Trotz der jüngsten Fortschritte im Verständnis des Stärkestoffwechsels bleiben weiterhin viele Fragen über den detaillierten source und sink Metabolismus offen. Ziel dieser Studie war es daher, den aktuellen Forschungsstand über die Struktur und den Stoffwechsel von Stärke in Pflanzen aufzuzeigen. Darüber hinaus sollte in dieser Studie die Regulierung des Stärkestoffwechsels in den Blättern (source) des Modellorganismus Arabidopsis thaliana und in den Ölpalmfrüchten (sink) von Elaeis guineensis, einer Nutzpflanze, aufgeklärt werden. Die Analyse des source Gewebes konzentrierte sich dabei auf die Auswirkungen auf Stärkeparamter wie beispielsweise die Granulazahl durch die Blockierung des Stärkeabbaus in Blättern. Dazu wurde die Arabidopsis Mutante, der das cytosolische Disproportionating Enzym 2 (DPE2) und die plastidiale Glucanphosphorylase 1 (PHS1) fehlen (dpe2/phs1), untersucht. Ebenfalls wurden Dreifachmutanten im Hintergund von dpe2/phs1, denen Starch excess 4 (SEX4), Isoamylase 3, Phosphoglucan-Wasser-Dikinase (PWD) oder das Disproportionating Enzym 1 (DPE1) fehlen, erzeugt. Die Analyse zeigt, dass die Anzahl der Stärkegranula pro Chloroplast nicht festgelegt ist und während des gesamten Wachstums der Pflanze reguliert wird. Diese Daten liefern ein verbessertes Verständnis über die Komplexität der Kontrollmechanismen der Granulazahlregulation in Chloroplasten. Die Untersuchung des sink Gewebes soll die Beziehung zwischen dem Stärkestoffwechsel und dem Lipidstoffwechselweg in Ölpalmenfrüchten verdeutlichen. Diese Studie wurde durchgeführt, um die Veränderung von Stärkeparametern, die Häufigkeit von Metaboliten und die Genexpression während der Entwicklung von Ölpalmenfrüchten mit unterschiedlichen Ölausbeuten zu erforschen. Die Analyse zeigt, dass sowohl Stärke als auch Saccharose als reliable Biomarker für den Ölertrag von Ölpalmen verwendet werden können. Darüber hinaus konnte bewiesen werden, dass die mit dem Stärkestoffwechsel verbundenen Enzymisoformen die Ölproduktion in Ölpalmenfrüchten beeinflussen. Insgesamt liefert diese Arbeit neue Informationen über den Stärkestoffwechsel im source Gewebe von A.thaliana und im sink von E.guineensis. Die in dieser Arbeit gezeigten Ergebnisse können für viele Anwendungen genutzt werden, z. B. für die Veränderung der Stärkeparameter in anderen Pflanzen für spezifische Bedürfnisse. KW - starch KW - oil palm KW - Arabidopsis thaliana KW - source and sink KW - Arabidopsis thaliana KW - Palmöl KW - Source und Sink KW - Stärke Y1 - 2023 ER - TY - JOUR A1 - Benina, Maria A1 - Obata, Toshihiro A1 - Mehterov, Nikolay A1 - Ivanov, Ivan A1 - Petrov, Veselin A1 - Toneva, Valentina A1 - Fernie, Alisdair R. A1 - Gechev, Tsanko S. T1 - Comparative metabolic profiling of Haberlea rhodopensis, Thellungiella halophyla, and Arabidopsis thaliana exposed to low temperature JF - Frontiers in plant science N2 - Haberlea rhodopensis is a resurrection species with extreme resistance to drought stress and desiccation but also with ability to withstand low temperatures and freezing stress. In order to identify biochemical strategies which contribute to Haberlea's remarkable stress tolerance, the metabolic reconfiguration of H. rhodopensis during low temperature (4 degrees C) and subsequent return to optimal temperatures (21 degrees C) was investigated and compared with that of the stress tolerant Thellungiella halophyla and the stress sensitive Arabidopsis thaliana. Metabolic analysis by GC-MS revealed intrinsic differences in the metabolite levels of the three species even at 21 degrees C. H. rhodopensis had significantly more raffinose, melibiose, trehalose, rhamnose, myo-inositol, sorbitol, galactinol, erythronate, threonate, 2-oxoglutarate, citrate, and glycerol than the other two species. A. thaliana had the highest levels of putrescine and fumarate, while T halophila had much higher levels of several amino acids, including alanine, asparagine, beta-alanine, histidine, isoleucine, phenylalanine, serine, threonine, and valine. In addition, the three species responded differently to the low temperature treatment and the subsequent recovery, especially with regard to the sugar metabolism. Chilling induced accumulation of maltose in H. rhodopensis and raffinose in A. thaliana but the raffinose levels in low temperature exposed Arabidopsis were still much lower than these in unstressed Haberlea. While all species accumulated sucrose during chilling, that accumulation was transient in H. rhodopensis and A. thaliana but sustained in T halophila after the return to optimal temperature. Thus, Haberlea's metabolome appeared primed for chilling stress but the low temperature acclimation induced additional stress-protective mechanisms. A diverse array of sugars, organic acids, and polyols constitute Haberlea's main metabolic defence mechanisms against chilling, while accumulation of amino acids and amino acid derivatives contribute to the low temperature acclimation in Arabidopsis and Thellungiella. Collectively, these results show inherent differences in the metabolomes under the ambient temperature and the strategies to respond to low temperature in the three species. KW - Arabidopsis thaliana KW - Haberlea rhodopensis KW - low temperature stress KW - metabolite profiling KW - Thellungiella halophila Y1 - 2013 U6 - https://doi.org/10.3389/fpls.2013.00499 SN - 1664-462X VL - 4 IS - 1 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Bäurle, Isabel A1 - Brzezinka, Krzysztof A1 - Altmann, Simone T1 - BRUSHY1/TONSOKU/MGOUN3 is required for heat stress memory JF - Plant Cell & Environment N2 - Plants encounter biotic and abiotic stresses many times during their life cycle and this limits their productivity. Moderate heat stress (HS) primes a plant to survive higher temperatures that are lethal in the naïve state. Once temperature stress subsides, the memory of the priming event is actively retained for several days preparing the plant to better cope with recurring HS. Recently, chromatin regulation at different levels has been implicated in HS memory. Here, we report that the chromatin protein BRUSHY1 (BRU1)/TONSOKU/MGOUN3 plays a role in the HS memory in Arabidopsis thaliana. BRU1 is also involved in transcriptional gene silencing and DNA damage repair. This corresponds with the functions of its mammalian orthologue TONSOKU‐LIKE/NFΚBIL2. During HS memory, BRU1 is required to maintain sustained induction of HS memory‐associated genes, whereas it is dispensable for the acquisition of thermotolerance. In summary, we report that BRU1 is required for HS memory in A. thaliana, and propose a model where BRU1 mediates the epigenetic inheritance of chromatin states across DNA replication and cell division. KW - Arabidopsis thaliana KW - BRUSHY1 KW - chromatin KW - priming Y1 - 2019 U6 - https://doi.org/10.1111/pce.13365 VL - 42 SP - 771 EP - 781 ER - TY - JOUR A1 - Christian, Jan-Ole A1 - Braginets, Rostyslav A1 - Schulze, Waltraud X. A1 - Walther, Dirk T1 - Characterization and prediction of protein phosphorylation hotspots in Arabidopsis thaliana JF - Frontiers in plant science N2 - The regulation of protein function by modulating the surface charge status via sequence-locally enriched phosphorylation sites (P-sites) in so called phosphorylation "hotspots" has gained increased attention in recent years. We set out to identify P-hotspots in the model plant Arabidopsis thaliana. We analyzed the spacing of experimentally detected P-sites within peptide-covered regions along Arabidopsis protein sequences as available from the PhosPhAt database. Confirming earlier reports (Schweiger and Lanial, 2010), we found that, indeed, P-sites tend to cluster and that distributions between serine and threonine P-sites to their respected closest next P-site differ significantly from those for tyrosine P-sites. The ability to predict P-hotspots by applying available computational P-site prediction programs that focus on identifying single P-sites was observed to be severely compromised by the inevitable interference of nearby P-sites. We devised a new approach, named HotSPotter, for the prediction of phosphorylation hotspots. HotSPotter is based primarily on local amino acid compositional preferences rather than sequence position-specific motifs and uses support vector machines as the underlying classification engine. HotSPotter correctly identified experimentally determined phosphorylation hotspots in A. thaliana with high accuracy. Applied to the Arabidopsis proteome, HotSPotter-predicted 13,677 candidate P-hotspots in 9,599 proteins corresponding to 7,847 unique genes. Hotspot containing proteins are involved predominantly in signaling processes confirming the surmised modulating role of hotspots in signaling and interaction events. Our study provides new bioinformatics means to identify phosphorylation hotspots and lays the basis for further investigating novel candidate P-hotspots. All phosphorylation hotspot annotations and predictions have been made available as part of the PhosPhAt database at http://phosphat.mpimp-golm.mpg.de. KW - protein phosphorylation KW - hotspots KW - Arabidopsis thaliana KW - support vector machines KW - regulation Y1 - 2012 U6 - https://doi.org/10.3389/fpls.2012.00207 SN - 1664-462X VL - 3 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Czesnick, Hjördis A1 - Lenhard, Michael T1 - Antagonistic control of flowering time by functionally specialized poly(A) polymerases in Arabidopsis thaliana JF - The plant journal N2 - Polyadenylation is a critical 3-end processing step during maturation of pre-mRNAs, and the length of the poly(A) tail affects mRNA stability, nuclear export and translation efficiency. The Arabidopsis thaliana genome encodes three canonical nuclear poly(A) polymerase (PAPS) isoforms fulfilling specialized functions, as reflected by their different mutant phenotypes. While PAPS1 affects several processes, such as the immune response, organ growth and male gametophyte development, the roles of PAPS2 and PAPS4 are largely unknown. Here we demonstrate that PAPS2 and PAPS4 promote flowering in a partially redundant manner. The enzymes act antagonistically to PAPS1, which delays the transition to flowering. The opposite flowering-time phenotypes in paps1 and paps2 paps4 mutants are at least partly due to decreased or increased FLC activity, respectively. In contrast to paps2 paps4 mutants, plants with increased PAPS4 activity flower earlier than the wild-type, concomitant with reduced FLC expression. Double mutant analyses suggest that PAPS2 and PAPS4 act independently of the autonomous pathway components FCA, FY and CstF64. The direct polyadenylation targets of the three PAPS isoforms that mediate their effects on flowering time do not include FLC sense mRNA and remain to be identified. Thus, our results uncover a role for canonical PAPS isoforms in flowering-time control, raising the possibility that modulating the balance of the isoform activities could be used to fine tune the transition to flowering. Significance Statement The length of the poly(A) tail affects mRNA stability, nuclear export and translation efficiency. Arabidopsis has three isoforms of nuclear poly(A) polymerase (PAPS): PAPS1 plays a major role in organ growth and plant defence. Here we show that PAPS2 and PAPS4 redundantly promote flowering and act antagonistically to PAPS1, which delays flowering. We suggest that modulating the activity of these isoforms fine-tunes the transition to flowering. KW - polyadenylation KW - 3-end processing KW - poly(A) polymerase KW - flowering time KW - autonomous pathway KW - Arabidopsis thaliana Y1 - 2016 U6 - https://doi.org/10.1111/tpj.13280 SN - 0960-7412 SN - 1365-313X VL - 88 SP - 570 EP - 583 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Fettke, Jörg A1 - Nunes-Nesi, Adriano A1 - Fernie, Alisdair R. A1 - Steup, Martin T1 - Identification of a novel heteroglycan-interacting protein, HIP 1.3, from Arabidopsis thaliana JF - Journal of plant physiology : biochemistry, physiology, molecular biology and biotechnology of plants N2 - Plastidial degradation of transitory starch yields mainly maltose and glucose. Following the export into the cytosol, maltose acts as donor for a glucosyl transfer to cytosolic heteroglycans as mediated by a cytosolic transglucosidase (DPE2; EC 2.4.1.25) and the second glucosyl residue is liberated as glucose. The cytosolic phosphorylase (Pho2/PHS2; EC 2.4.1.1) also interacts with heteroglycans using the same intramolecular sites as DPE2. Thus, the two glucosyl transferases interconnect the cytosolic pools of glucose and glucose 1-phosphate. Due to the complex monosaccharide pattern, other heteroglycan-interacting proteins (Hips) are expected to exist. Identification of those proteins was approached by using two types of affinity chromatography. Heteroglycans from leaves of Arabidopsis thaliana (Col-0) covalently bound to Sepharose served as ligands that were reacted with a complex mixture of buffer-soluble proteins from Arabidopsis leaves. Binding proteins were eluted by sodium chloride. For identification, SDS-PAGE, tryptic digestion and MALDI-TOF analyses were applied. A strongly interacting polypeptide (approximately 40 kDa; designated as HIP1.3) was observed as product of locus At1g09340. Arabidopsis mutants deficient in HIP1.3 were reduced in growth and contained heteroglycans displaying an altered monosaccharide pattern. Wild type plants express HIP1.3 most strongly in leaves. As revealed by immuno fluorescence, HIP1.3 is located in the cytosol of mesophyll cells but mostly associated with the cytosolic surface of the chloroplast envelope membranes. In an HIP1.3-deficient mutant the immunosignal was undetectable. Metabolic profiles from leaves of this mutant and wild type plants as well were determined by GC-MS. As compared to the wild type control, more than ten metabolites, such as ascorbic acid, fructose, fructose bisphosphate, glucose, glycine, were elevated in darkness but decreased in the light. Although the biochemical function of HIP1.3 has not yet been elucidated, it is likely to possess an important function in the central carbon metabolism of higher plants. KW - Arabidopsis thaliana KW - Carbohydrate binding proteins KW - Cytosolic heteroglycans KW - Maltose metabolism KW - Starch metabolism Y1 - 2011 U6 - https://doi.org/10.1016/j.jplph.2010.09.008 SN - 0176-1617 VL - 168 IS - 12 SP - 1415 EP - 1425 PB - Elsevier CY - Jena ER - TY - JOUR A1 - Gonzalez, Wendy A1 - Riedelsberger, Janin A1 - Morales-Navarro, Samuel E. A1 - Caballero, Julio A1 - Alzate-Morales, Jans H. A1 - Gonzalez-Nilo, Fernando D. A1 - Dreyer, Ingo T1 - The pH sensor of the plant K+-uptake channel KAT1 is built from a sensory cloud rather than from single key amino acids JF - The biochemical journal N2 - The uptake of potassium ions (K+) accompanied by an acidification of the apoplasm is a prerequisite for stomatal opening. The acidification (approximately 2-2.5 pH units) is perceived by voltage-gated inward potassium channels (K-in) that then can open their pores with lower energy cost. The sensory units for extracellular pH in stomatal K-in channels are proposed to be histidines exposed to the apoplasm. However, in the Arabidopsis thaliana stomatal K-in channel KAT1, mutations in the unique histidine exposed to the solvent (His(267)) do not affect the pH dependency. We demonstrate in the present study that His(267) of the KAT1 channel cannot sense pH changes since the neighbouring residue Phe(266) shifts its pK(a) to undetectable values through a cation-pi interaction. Instead, we show that Glu(240) placed in the extracellular loop between transmembrane segments S5 and S6 is involved in the extracellular acid activation mechanism. Based on structural models we propose that this region may serve as a molecular link between the pH- and the voltage-sensor. Like Glu(240), several other titratable residues could contribute to the pH-sensor of KAT1, interact with each other and even connect such residues far away from the voltage-sensor with the gating machinery of the channel. KW - Arabidopsis thaliana KW - channel protein structure KW - channel protein-proton interaction KW - KAT1 KW - pH regulation KW - potassium chanel Y1 - 2012 U6 - https://doi.org/10.1042/BJ20111498 SN - 0264-6021 VL - 442 IS - 7 SP - 57 EP - 63 PB - Portland Press CY - London ER - TY - JOUR A1 - Hansen, Bjoern Oest A1 - Meyer, Etienne H. A1 - Ferrari, Camilla A1 - Vaid, Neha A1 - Movahedi, Sara A1 - Vandepoele, Klaas A1 - Nikoloski, Zoran A1 - Mutwil, Marek T1 - Ensemble gene function prediction database reveals genes important for complex I formation in Arabidopsis thaliana JF - New phytologist : international journal of plant science N2 - Recent advances in gene function prediction rely on ensemble approaches that integrate results from multiple inference methods to produce superior predictions. Yet, these developments remain largely unexplored in plants. We have explored and compared two methods to integrate 10 gene co-function networks for Arabidopsis thaliana and demonstrate how the integration of these networks produces more accurate gene function predictions for a larger fraction of genes with unknown function. These predictions were used to identify genes involved in mitochondrial complex I formation, and for five of them, we confirmed the predictions experimentally. The ensemble predictions are provided as a user-friendly online database, EnsembleNet. The methods presented here demonstrate that ensemble gene function prediction is a powerful method to boost prediction performance, whereas the EnsembleNet database provides a cutting-edge community tool to guide experimentalists. KW - Arabidopsis thaliana KW - co-function network KW - complex I KW - ensemble prediction KW - gene function prediction Y1 - 2017 U6 - https://doi.org/10.1111/nph.14921 SN - 0028-646X SN - 1469-8137 VL - 217 IS - 4 SP - 1521 EP - 1534 PB - Wiley CY - Hoboken ER -