TY - JOUR A1 - Schmidt, Lena Katharina A1 - Zimmermann, Alexander A1 - Elsenbeer, Helmut T1 - Ant mounds as a source of sediment in a tropical rainforest? JF - Hydrological processes N2 - In Lutzito catchment on Barro Colorado Island, Panama, extraordinarily high suspended-sediment yields of 1-2Mgha-1year-1 were generated despite the dense forest cover coinciding with erosion-resistant soils. We hypothesized that ant mounding activity is an important zoogeomorphological mechanism in this area, providing relevant quantities of easily transportable material at the soil surface. To test this hypothesis, all ant mound material was collected collected for dry mass determination from thirty 4m2 plots installed in the study area every 1-3days during the 39-day sampling period. Additionally, three ground-nesting ant species responsible for mounds in the study area, Ectatomma ruidum, Trachymyrmex cornetzi and Strumigenys marginiventris, were identified. On the basis of the total of 1.38kg of material collected in the wet season of 2011, the estimate for the whole 8months wet season amounts to 725kgha-1. As this value is in the same order of magnitude as sediment output, it shows that ants may act as important ecosystem engineers and contribute to sediment production here by providing large quantities of fine-grained, readily erodible material at the soil surface for subsequent transport to the streambed. Copyright (c) 2014 John Wiley & Sons, Ltd. KW - ant mounds KW - soil erosion KW - sediment output KW - zoogeomorphology Y1 - 2014 U6 - https://doi.org/10.1002/hyp.10222 SN - 0885-6087 SN - 1099-1085 VL - 28 IS - 13 SP - 4156 EP - 4160 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Bronstert, Axel A1 - de Araujo, Josè Carlos A1 - Batalla Villanueva, Ramon J. A1 - Costa, Alexandre Cunha A1 - Delgado, José Miguel Martins A1 - Francke, Till A1 - Förster, Saskia A1 - Güntner, Andreas A1 - Lopez-Tarazon, José Andrés A1 - Mamede, George Leite A1 - Medeiros, Pedro Henrique Augusto A1 - Mueller, Eva A1 - Vericat, Damia T1 - Process-based modelling of erosion, sediment transport and reservoir siltation in mesoscale semi-arid catchments JF - Journal of soils and sediments : protection, risk assessment and remediation N2 - To support scientifically sound water management in dryland environments a modelling system has been developed for the quantitative assessment of water and sediment fluxes in catchments, transport in the river system, and retention in reservoirs. The spatial scale of interest is the mesoscale because this is the scale most relevant for management of water and land resources. This modelling system comprises process-oriented hydrological components tailored for dryland characteristics coupled with components comprising hillslope erosion, sediment transport and reservoir deposition processes. The spatial discretization is hierarchically designed according to a multi-scale concept to account for particular relevant process scales. The non-linear and partly intermittent run-off generation and sediment dynamics are dealt with by accounting for connectivity phenomena at the intersections of landscape compartments. The modelling system has been developed by means of data from nested research catchments in NE-Spain and in NE-Brazil. In the semi-arid NE of Brazil sediment retention along the topography is the main process for sediment retention at all scales, i.e. the sediment delivery is transport limited. This kind of deposition retains roughly 50 to 60 % of eroded sediment, maintaining a similar deposition proportion in all spatial scales investigated. On the other hand, the sediment retained in reservoirs is clearly related to the scale, increasing with catchment area. With increasing area, there are more reservoirs, increasing the possibility of deposition. Furthermore, the area increase also promotes an increase in flow volume, favouring the construction of larger reservoirs, which generally overflow less frequently and retain higher sediment fractions. The second example comprises a highly dynamic Mediterranean catchment in NE-Spain with nested sub-catchments and reveals the full dynamics of hydrological, erosion and deposition features. The run-off modelling performed well with only some overestimation during low-flow periods due to the neglect of water losses along the river. The simulated peaks in sediment flux are reproduced well, while low-flow sediment transport is less well captured, due to the disregard of sediment remobilization in the riverbed during low flow. This combined observation and modelling study deepened the understanding of hydro-sedimentological systems characterized by flashy run-off generation and by erosion and sediment transport pulses through the different landscape compartments. The connectivity between the different landscape compartments plays a very relevant role, regarding both the total mass of water and sediment transport and the transport time through the catchment. KW - Connectivity KW - Deposition KW - Erosion KW - Modelling KW - Sediment transfer KW - Semi-arid Y1 - 2014 U6 - https://doi.org/10.1007/s11368-014-0994-1 SN - 1439-0108 SN - 1614-7480 VL - 14 IS - 12 SP - 2001 EP - 2018 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Nguyen Nghia Hung, A1 - Delgado, José Miguel Martins A1 - Güntner, Andreas A1 - Merz, Bruno A1 - Bardossy, Andras A1 - Apel, Heiko T1 - Sedimentation in the floodplains of the Mekong Delta, Vietnam Part II: deposition and erosion JF - Hydrological processes N2 - Deposition and erosion play a key role in the determination of the sediment budget of a river basin, as well as for floodplain sedimentation. Floodplain sedimentation, in turn, is a relevant factor for the design of flood protection measures, productivity of agro-ecosystems, and for ecological rehabilitation plans. In the Mekong Delta, erosion and deposition are important factors for geomorphological processes like the compensation of deltaic subsidence as well as for agricultural productivity. Floodplain deposition is also counteracting the increasing climate change induced hazard by sea level rise in the delta. Despite this importance, a sediment database of the Mekong Delta is lacking, and the knowledge about erosion and deposition processes is limited. In the Vietnamese part of the Delta, the annually flooded natural floodplains have been replaced by a dense system of channels, dikes, paddy fields, and aquaculture ponds, resulting in floodplain compartments protected by ring dikes. The agricultural productivity depends on the sediment and associated nutrient input to the floodplains by the annual floods. However, no quantitative information regarding their sediment trapping efficiency has been reported yet. The present study investigates deposition and erosion based on intensive field measurements in three consecutive years (2008, 2009, and 2010). Optical backscatter sensors are used in combination with sediment traps for interpreting deposition and erosion processes in different locations. In our study area, the mean calculated deposition rate is 6.86kg/m(2) (approximate to 6mm/year). The key parameters for calculating erosion and deposition are estimated, i.e. the critical bed shear stress for deposition and erosion and the surface constant erosion rate. The bulk of the floodplain sediment deposition is found to occur during the initial stage of floodplain inundation. This finding has direct implications on the operation of sluice gates in order to optimize sediment input and distribution in the floodplains. KW - Mekong delta KW - sediment dynamics KW - deposition KW - erosion KW - floodplain sedimentation Y1 - 2014 U6 - https://doi.org/10.1002/hyp.9855 SN - 0885-6087 SN - 1099-1085 VL - 28 IS - 7 SP - 3145 EP - 3160 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Creutzfeldt, Benjamin A1 - Troch, Peter A. A1 - Güntner, Andreas A1 - Ferre, Ty P. A. A1 - Gräff, Thomas A1 - Merz, Bruno T1 - Storage-discharge relationships at different catchment scales based on local high-precision gravimetry JF - Hydrological processes N2 - In hydrology, the storage-discharge relationship is a fundamental catchment property. Understanding what controls this relationship is at the core of catchment science. To date, there are no direct methods to measure water storage at catchment scales (10(1)-10(3)km(2)). In this study, we use direct measurements of terrestrial water storage dynamics by means of superconducting gravimetry in a small headwater catchment of the Regen River, Germany, to derive empirical storage-discharge relationships in nested catchments of increasing scale. Our results show that the local storage measurements are strongly related to streamflow dynamics at larger scales (> 100km(2); correlation coefficient=0.78-0.81), but at small scale, no such relationship exists (similar to 1km(2); correlation coefficients=-0.11). The geologic setting in the region can explain both the disconnection between local water storage and headwater runoff, and the connectivity between headwater storage and streams draining larger catchment areas. More research is required to understand what controls the form of the observed storage-discharge relationships at the catchment scale. This study demonstrates that high-precision gravimetry can provide new insights into the complex relationship between state and response of hydrological systems. KW - water storage KW - high-precision gravimeter KW - storage-discharge relationship KW - nested catchments Y1 - 2014 U6 - https://doi.org/10.1002/hyp.9689 SN - 0885-6087 SN - 1099-1085 VL - 28 IS - 3 SP - 1465 EP - 1475 PB - Wiley-Blackwell CY - Hoboken ER -