TY - JOUR A1 - Reibold, Kerstin T1 - Settler Colonialism, Decolonization, and Climate Change JF - Journal of applied philosophy N2 - The article proposes that climate change makes enduring colonial injustices and structures visible. It focuses on the imposition and dominance of colonial concepts of land and self-determination on Indigenous peoples in settler states. It argues that if the dominance of these colonial frameworks remains unaddressed, the progressing climate change will worsen other colonial injustices, too. Specifically, Indigenous self-determination capabilities will be increasingly undermined, and Indigenous peoples will experience the loss of what they understand as relevant land from within their own ontologies of land. The article holds that even if settler states strive to repair colonial injustices, these efforts will be unsuccessful if climate change occurs and decolonization is pursued within the framework of a settler colonial ontology of land. Therefore, the article suggests, decolonization of the ontologies of land and concepts of self-determination is a precondition for a just response to climate change. KW - territorial rights KW - indigenous rights KW - climate change KW - colonialism Y1 - 2022 U6 - https://doi.org/10.1111/japp.12573 SN - 0264-3758 SN - 1468-5930 PB - Wiley-Blackwell CY - Oxford ER - TY - JOUR A1 - Mtilatila, Lucy Mphatso Ng'ombe A1 - Bronstert, Axel A1 - Vormoor, Klaus Josef T1 - Temporal evaluation and projections of meteorological droughts in the Greater Lake Malawi Basin, Southeast Africa JF - Frontiers in Water N2 - The study examined the potential future changes of drought characteristics in the Greater Lake Malawi Basin in Southeast Africa. This region strongly depends on water resources to generate electricity and food. Future projections (considering both moderate and high emission scenarios) of temperature and precipitation from an ensemble of 16 bias-corrected climate model combinations were blended with a scenario-neutral response surface approach to analyses changes in: (i) the meteorological conditions, (ii) the meteorological water balance, and (iii) selected drought characteristics such as drought intensity, drought months, and drought events, which were derived from the Standardized Precipitation and Evapotranspiration Index. Changes were analyzed for a near-term (2021–2050) and far-term period (2071–2100) with reference to 1976–2005. The effect of bias-correction (i.e., empirical quantile mapping) on the ability of the climate model ensemble to reproduce observed drought characteristics as compared to raw climate projections was also investigated. Results suggest that the bias-correction improves the climate models in terms of reproducing temperature and precipitation statistics but not drought characteristics. Still, despite the differences in the internal structures and uncertainties that exist among the climate models, they all agree on an increase of meteorological droughts in the future in terms of higher drought intensity and longer events. Drought intensity is projected to increase between +25 and +50% during 2021–2050 and between +131 and +388% during 2071–2100. This translates into +3 to +5, and +7 to +8 more drought months per year during both periods, respectively. With longer lasting drought events, the number of drought events decreases. Projected droughts based on the high emission scenario are 1.7 times more severe than droughts based on the moderate scenario. That means that droughts in this region will likely become more severe in the coming decades. Despite the inherent high uncertainties of climate projections, the results provide a basis in planning and (water-)managing activities for climate change adaptation measures in Malawi. This is of particular relevance for water management issues referring hydro power generation and food production, both for rain-fed and irrigated agriculture. KW - meteorological drought KW - drought intensity KW - climate change KW - drought events KW - Lake Malawi KW - Shire River KW - drought projections KW - South-Eastern Africa Y1 - 2022 U6 - https://doi.org/10.3389/frwa.2022.1041452 SN - 2624-9375 SP - 1 EP - 16 PB - Frontiers Media S.A. CY - Lausanne, Schweiz ER - TY - JOUR A1 - Mtilatila, Lucy Mphatso Ng'ombe A1 - Bronstert, Axel A1 - Vormoor, Klaus Josef T1 - Temporal evaluation and projections of meteorological droughts in the Greater Lake Malawi Basin, Southeast Africa JF - Frontiers in water N2 - The study examined the potential future changes of drought characteristics in the Greater Lake Malawi Basin in Southeast Africa. This region strongly depends on water resources to generate electricity and food. Future projections (considering both moderate and high emission scenarios) of temperature and precipitation from an ensemble of 16 bias-corrected climate model combinations were blended with a scenario-neutral response surface approach to analyses changes in: (i) the meteorological conditions, (ii) the meteorological water balance, and (iii) selected drought characteristics such as drought intensity, drought months, and drought events, which were derived from the Standardized Precipitation and Evapotranspiration Index. Changes were analyzed for a near-term (2021-2050) and far-term period (2071-2100) with reference to 1976-2005. The effect of bias-correction (i.e., empirical quantile mapping) on the ability of the climate model ensemble to reproduce observed drought characteristics as compared to raw climate projections was also investigated. Results suggest that the bias-correction improves the climate models in terms of reproducing temperature and precipitation statistics but not drought characteristics. Still, despite the differences in the internal structures and uncertainties that exist among the climate models, they all agree on an increase of meteorological droughts in the future in terms of higher drought intensity and longer events. Drought intensity is projected to increase between +25 and +50% during 2021-2050 and between +131 and +388% during 2071-2100. This translates into +3 to +5, and +7 to +8 more drought months per year during both periods, respectively. With longer lasting drought events, the number of drought events decreases. Projected droughts based on the high emission scenario are 1.7 times more severe than droughts based on the moderate scenario. That means that droughts in this region will likely become more severe in the coming decades. Despite the inherent high uncertainties of climate projections, the results provide a basis in planning and (water-)managing activities for climate change adaptation measures in Malawi. This is of particular relevance for water management issues referring hydro power generation and food production, both for rain-fed and irrigated agriculture. KW - meteorological drought KW - drought intensity KW - climate change KW - drought KW - events KW - Lake Malawi KW - Shire River KW - drought projections KW - South-Eastern KW - Africa Y1 - 2022 U6 - https://doi.org/10.3389/frwa.2022.1041452 SN - 2624-9375 VL - 4 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Rolph, Rebecca A1 - Overduin, Pier Paul A1 - Ravens, Thomas A1 - Lantuit, Hugues A1 - Langer, Moritz T1 - ArcticBeach v1.0 BT - a physics-based parameterization of pan-Arctic coastline erosion JF - Frontiers in Earth Science N2 - In the Arctic, air temperatures are increasing and sea ice is declining, resulting in larger waves and a longer open water season, all of which intensify the thaw and erosion of ice-rich coasts. Climate change has been shown to increase the rate of Arctic coastal erosion, causing problems for Arctic cultural heritage, existing industrial, military, and civil infrastructure, as well as changes in nearshore biogeochemistry. Numerical models that reproduce historical and project future Arctic erosion rates are necessary to understand how further climate change will affect these problems, and no such model yet exists to simulate the physics of erosion on a pan-Arctic scale. We have coupled a bathystrophic storm surge model to a simplified physical erosion model of a permafrost coastline. This Arctic erosion model, called ArcticBeach v1.0, is a first step toward a physical parameterization of Arctic shoreline erosion for larger-scale models. It is forced by wind speed and direction, wave period and height, sea surface temperature, all of which are masked during times of sea ice cover near the coastline. Model tuning requires observed historical retreat rates (at least one value), as well as rough nearshore bathymetry. These parameters are already available on a pan-Arctic scale. The model is validated at three study sites at 1) Drew Point (DP), Alaska, 2) Mamontovy Khayata (MK), Siberia, and 3) Veslebogen Cliffs, Svalbard. Simulated cumulative retreat rates for DP and MK respectively (169 and 170 m) over the time periods studied at each site (2007-2016, and 1995-2018) are found to the same order of magnitude as observed cumulative retreat (172 and 120 m). The rocky Veslebogen cliffs have small observed cumulative retreat rates (0.05 m over 2014-2016), and our model was also able to reproduce this same order of magnitude of retreat (0.08 m). Given the large differences in geomorphology between the study sites, this study provides a proof-of-concept that ArcticBeach v1.0 can be applied on very different permafrost coastlines. ArcticBeach v1.0 provides a promising starting point to project retreat of Arctic shorelines, or to evaluate historical retreat in places that have had few observations. KW - permafrost KW - erosion KW - modelling KW - arctic KW - climate change Y1 - 2022 U6 - https://doi.org/10.3389/feart.2022.962208 SN - 2296-6463 VL - 10 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Li, Zhen A1 - Spangenberg, Erik A1 - Schicks, Judith Maria A1 - Kempka, Thomas T1 - Numerical Simulation of Coastal Sub-Permafrost Gas Hydrate Formation in the Mackenzie Delta, Canadian Arctic JF - Energies N2 - The Mackenzie Delta (MD) is a permafrost-bearing region along the coasts of the Canadian Arctic which exhibits high sub-permafrost gas hydrate (GH) reserves. The GH occurring at the Mallik site in the MD is dominated by thermogenic methane (CH4), which migrated from deep conventional hydrocarbon reservoirs, very likely through the present fault systems. Therefore, it is assumed that fluid flow transports dissolved CH4 upward and out of the deeper overpressurized reservoirs via the existing polygonal fault system and then forms the GH accumulations in the Kugmallit-Mackenzie Bay Sequences. We investigate the feasibility of this mechanism with a thermo-hydraulic-chemical numerical model, representing a cross section of the Mallik site. We present the first simulations that consider permafrost formation and thawing, as well as the formation of GH accumulations sourced from the upward migrating CH4-rich formation fluid. The simulation results show that temperature distribution, as well as the thickness and base of the ice-bearing permafrost are consistent with corresponding field observations. The primary driver for the spatial GH distribution is the permeability of the host sediments. Thus, the hypothesis on GH formation by dissolved CH4 originating from deeper geological reservoirs is successfully validated. Furthermore, our results demonstrate that the permafrost has been substantially heated to 0.8-1.3 degrees C, triggered by the global temperature increase of about 0.44 degrees C and further enhanced by the Arctic Amplification effect at the Mallik site from the early 1970s to the mid-2000s. KW - gas hydrate KW - permafrost KW - methane KW - faults KW - climate change KW - Mallik KW - numerical simulations Y1 - 2022 U6 - https://doi.org/10.3390/en15144986 SN - 1996-1073 VL - 15 IS - 14 PB - MDPI CY - Basel ER - TY - JOUR A1 - Böhnke, Denise A1 - Krehl, Alice A1 - Moermann, Kai A1 - Volk, Rebekka A1 - Lützkendorf, Thomas A1 - Naber, Elias A1 - Becker, Ronja A1 - Norra, Stefan T1 - Mapping urban green and its ecosystem services at microscale-a methodological approach for climate adaptation and biodiversity JF - Sustainability / Multidisciplinary Digital Publishing Institute (MDPI) N2 - The current awareness of the high importance of urban green leads to a stronger need for tools to comprehensively represent urban green and its benefits. A common scientific approach is the development of urban ecosystem services (UES) based on remote sensing methods at the city or district level. Urban planning, however, requires fine-grained data that match local management practices. Hence, this study linked local biotope and tree mapping methods to the concept of ecosystem services. The methodology was tested in an inner-city district in SW Germany, comparing publicly accessible areas and non-accessible courtyards. The results provide area-specific [m(2)] information on the green inventory at the microscale, whereas derived stock and UES indicators form the basis for comparative analyses regarding climate adaptation and biodiversity. In the case study, there are ten times more micro-scale green spaces in private courtyards than in the public space, as well as twice as many trees. The approach transfers a scientific concept into municipal planning practice, enables the quantitative assessment of urban green at the microscale and illustrates the importance for green stock data in private areas to enhance decision support in urban development. Different aspects concerning data collection and data availability are critically discussed. KW - climate adaptation KW - urban green KW - mapping KW - ecosystem service cascade KW - model KW - surface type-function-concept KW - planning indicators KW - city district KW - level KW - urban planning practice KW - climate change Y1 - 2022 U6 - https://doi.org/10.3390/su14159029 SN - 2071-1050 VL - 14 IS - 15 PB - MDPI CY - Basel ER - TY - JOUR A1 - Guzman Arias, Diego Alejandro A1 - Samprogna Mohor, Guilherme A1 - Mendiondo, Eduardo Mario T1 - Multi-driver ensemble to evaluate the water utility business interruption cost induced by hydrological drought risk scenarios in Brazil JF - Urban water journal N2 - Climate change and increasing water demand in urban environments necessitate planning water utility companies' finances. Traditionally, methods to estimate the direct water utility business interruption costs (WUBIC) caused by droughts have not been clearly established. We propose a multi-driver assessment method. We project the water yield using a hydrological model driven by regional climate models under radiative forcing scenarios. We project water demand under stationary and non-stationary conditions to estimate drought severity and duration, which are linked with pricing policies recently adopted by the Sao Paulo Water Utility Company. The results showed water insecurity. The non-stationary trend imposed larger differences in the drought resilience financial gap, suggesting that the uncertainties of WUBIC derived from demand and climate models are greater than those associated with radiative forcing scenarios. As populations increase, proactively controlling demand is recommended to avoid or minimize reactive policy changes during future drought events, repeating recent financial impacts. KW - Business interruption cost KW - water utility company KW - hydrological KW - droughts KW - water security KW - urban water KW - climate change Y1 - 2022 U6 - https://doi.org/10.1080/1573062X.2022.2058564 SN - 1573-062X SN - 1744-9006 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Leins, Johannes A. A1 - Grimm, Volker A1 - Drechsler, Martin T1 - Large-scale PVA modeling of insects in cultivated grasslands BT - the role of dispersal in mitigating the effects of management schedules under climate change JF - Ecology and evolution N2 - In many species, dispersal is decisive for survival in a changing climate. Simulation models for population dynamics under climate change thus need to account for this factor. Moreover, large numbers of species inhabiting agricultural landscapes are subject to disturbances induced by human land use. We included dispersal in the HiLEG model that we previously developed to study the interaction between climate change and agricultural land use in single populations. Here, the model was parameterized for the large marsh grasshopper (LMG) in cultivated grasslands of North Germany to analyze (1) the species development and dispersal success depending on the severity of climate change in subregions, (2) the additional effect of grassland cover on dispersal success, and (3) the role of dispersal in compensating for detrimental grassland mowing. Our model simulated population dynamics in 60-year periods (2020-2079) on a fine temporal (daily) and high spatial (250 x 250 m(2)) scale in 107 subregions, altogether encompassing a range of different grassland cover, climate change projections, and mowing schedules. We show that climate change alone would allow the LMG to thrive and expand, while grassland cover played a minor role. Some mowing schedules that were harmful to the LMG nevertheless allowed the species to moderately expand its range. Especially under minor climate change, in many subregions dispersal allowed for mowing early in the year, which is economically beneficial for farmers. More severe climate change could facilitate LMG expansion to uninhabited regions but would require suitable mowing schedules along the path. These insights can be transferred to other species, given that the LMG is considered a representative of grassland communities. For more specific predictions on the dynamics of other species affected by climate change and land use, the publicly available HiLEG model can be easily adapted to the characteristics of their life cycle. KW - bilinear interpolation KW - climate change KW - dispersal success KW - land use KW - large marsh grasshopper KW - spatially explicit model Y1 - 2022 U6 - https://doi.org/10.1002/ece3.9063 SN - 2045-7758 VL - 12 IS - 7 PB - Wiley CY - Hoboken ER - TY - THES A1 - Mogrovejo Arias, Diana Carolina T1 - Assessment of the frequency and relevance of potentially pathogenic phenotypes in microbial isolates from Arctic environments N2 - The Arctic environments constitute rich and dynamic ecosystems, dominated by microorganisms extremely well adapted to survive and function under severe conditions. A range of physiological adaptations allow the microbiota in these habitats to withstand low temperatures, low water and nutrient availability, high levels of UV radiation, etc. In addition, other adaptations of clear competitive nature are directed at not only surviving but thriving in these environments, by disrupting the metabolism of neighboring cells and affecting intermicrobial communication. Since Arctic microbes are bioindicators which amplify climate alterations in the environment, the Arctic region presents the opportunity to study local microbiota and carry out research about interesting, potentially virulent phenotypes that could be dispersed into other habitats around the globe as a consequence of accelerating climate change. In this context, exploration of Arctic habitats as well as descriptions of the microbes inhabiting them are abundant but microbial competitive strategies commonly associated with virulence and pathogens are rarely reported. In this project, environmental samples from the Arctic region were collected and microorganisms (bacteria and fungi) were isolated. The clinical relevance of these microorganisms was assessed by observing the following virulence markers: ability to grow at a range of temperatures, expression of antimicrobial resistance and production of hemolysins. The aim of this project is to determine the frequency and relevance of these characteristics in an effort to understand microbial adaptations in habitats threatened by climate change. The isolates obtained and described here were able to grow at a range of temperatures, in some cases more than 30 °C higher than their original isolation temperature. A considerable number of them consistently expressed compounds capable of lysing sheep and bovine erythrocytes on blood agar at different incubation temperatures. Ethanolic extracts of these bacteria were able to cause rapid and complete lysis of erythrocyte suspensions and might even be hemolytic when assayed on human blood. In silico analyses showed a variety of resistance elements, some of them novel, against natural and synthetic antimicrobial compounds. In vitro experiments against a number of antimicrobial compounds showed resistance phenotypes belonging to wild-type populations and some non-wild type which clearly denote human influence in the acquisition of antimicrobial resistance. The results of this project demonstrate the presence of virulence-associated factors expressed by microorganisms of natural, non-clinical environments. This study contains some of the first reports, to the best of our knowledge, of hemolytic microbes isolated from the Arctic region. In addition, it provides additional information about the presence and expression of intrinsic and acquired antimicrobial resistance in environmental isolates, contributing to the understanding of the evolution of relevant pathogenic species and opportunistic pathogens. Finally, this study highlights some of the potential risks associated with changes in the polar regions (habitat melting and destruction, ecosystem transition and re-colonization) as important indirect consequences of global warming and altered climatic conditions around the planet. N2 - Die Arktis ist ein reiches und dynamisches Ökosystem, welches von Mikroorganismen dominiert wird, die unter extremen Bedingungen überleben und funktionieren können. Eine Reihe physiologischer Anpassungen ermöglichen es der Mikrobiota, in diesem Lebensraum zu überdauern niedrige Temperaturen, geringe Wasser- und Nährstoffverfügbarkeit, hohe UV-Strahlung, usw. standzuhalten. Andere Fähigkeiten zielen darauf ab, sich einen Konkurrenzvorteil zu verschaffen, indem sie mit antimikrobiellen Substanzen benachbarte Mikroorganismen stören und die intermikrobielle Kommunikation beeinflussen. Arktische Mikroorganismen sind Bioindikatoren, die Klimaveränderungen anzeigen können. Die Arktis bietet Möglichkeiten, die lokale Mikrobiota zu untersuchen, um Rückschlüsse auf den Klimawandel zu ziehen. Insbesondere Forschung über potenziell pathogene Phänotypen, die infolge der Beschleunigung des Klimawandels in andere Lebensräume auf der ganzen Welt verteilt werden könnten, ist hier von herausragender Bedeutung. In diesem Zusammenhang gibt es zahlreiche Untersuchungen zur Erforschung arktischer Lebensräume sowie Beschreibungen der in ihnen lebenden Mikroben, während über bakterielle Konkurrenzstrategien, die üblicherweise mit Virulenz und Krankheitserregern verbunden sind, bisher wenig geforscht wurde. In diesem Projekt wurden Umweltproben aus der Arktis entnommen und Bakterien und Pilze isoliert. Die klinische Relevanz dieser Mikroorganismen wurde durch Untersuchung der folgenden Virulenzmarker bewertet: Fähigkeit, in einem bestimmten Temperaturbereich zu wachsen, Expression von Antibiotikaresistenz und Produktion von Hämolysinen. Ziel dieses Projekts war es, das Vorkommen dieser Eigenschaften zu bestimmen, um die mikrobiellen Anpassungen in vom Klimawandel bedrohten Lebensräumen zu verstehen. Die beschriebenen Bakterienisolate konnten in einem relevanten Temperaturbereich wachsen, in einigen Fällen von mehr als 30 °C höher als ihre ursprüngliche Isolationstemperatur. Eine beträchtliche Anzahl der Isolate exprimierte konsistent Verbindungen, die Schaf- und Rindererythrozyten auf Blutagar bei verschiedenen Inkubationstemperaturen lysieren können. Die Extrakte einiger dieser Bakterien konnten eine schnelle und vollständige Lyse von Schaf- und Rindererythrozytensuspensionen verursachen und sind möglicherweise sogar hämolytisch gegenüber humanem Blut. Darüber hinaus zeigten Genomanalysen eine Vielzahl von Resistenzgenen gegen natürliche und synthetische antimikrobielle Verbindungen, einige neuartige. In-vitro-Experimente zeigten, dass einige Resistenzphänotypen zu Wildtyp-Populationen während andere zu Nicht-Wildtyp gehören, was auf einen menschlichen Einfluss auf den Erwerb von Antibiotikaresistenzen in der Umwelt eindeutig hindeutet. Die Ergebnisse dieses Projekts zeigen das Vorhandensein von Virulenz-assoziierten Faktoren, die von Mikroorganismen natürlicher, nicht klinischer Umgebungen exprimiert werden. Diese Studie enthält nach unserem besten Wissen einige der ersten Berichte über hämolytische Mikroben, die aus der Arktis isoliert wurden. Darüber hinaus liefert es zusätzliche Informationen über das Vorhandensein und die Expression von intrinsischer und erworbener antimikrobieller Resistenz in Umweltisolaten und trägt zum Verständnis der Entwicklung relevanter pathogener Spezies und opportunistischer Pathogene bei. Schließlich beleuchtet diese Studie einige der potenziellen Risiken, die mit Veränderungen in den Polarregionen (Schmelzen und Zerstörung des Lebensraums, Übergang des Ökosystems und Wiederbesiedlung) als wichtige indirekte Folgen der globalen Erwärmung und veränderter klimatischer Bedingungen auf dem Planeten verbunden sind. KW - Arctic KW - pathogens KW - virulence KW - hemolysis KW - antimicrobial resistance KW - climate change KW - bacteria KW - fungi KW - thermotolerance KW - antibiotic resistance KW - Arktis KW - Krankheitserreger KW - Virulenz KW - Hämolyse KW - Antibiotikaresistenz KW - Klimawandel KW - Bakterien KW - Pilze KW - Thermotoleranz Y1 - 2021 N1 - The author would like to acknowledge that the project leading to this doctoral dissertation has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 675546, research project “Microorganisms in Warming Arctic Environments - MicroArctic”. ER - TY - JOUR A1 - Skålevåg, Amalie A1 - Vormoor, Klaus Josef T1 - Daily streamflow trends in Western versus Eastern Norway and their attribution to hydro-meteorological drivers JF - Hydrological processes : an international journal N2 - Regional warming and modifications in precipitation regimes has large impacts on streamflow in Norway, where both rainfall and snowmelt are important runoff generating processes. Hydrological impacts of recent changes in climate are usually investigated by trend analyses applied on annual, seasonal, or monthly time series. None of these detect sub-seasonal changes and their underlying causes. This study investigated sub-seasonal changes in streamflow, rainfall, and snowmelt in 61 and 51 catchments respectively in Western (Vestlandet) and Eastern (ostlandet) Norway by applying the Mann-Kendall test and Theil-Sen estimator on 10-day moving averaged daily time series over a 30-year period (1983-2012). The relative contribution of rainfall versus snowmelt to daily streamflow and the changes therein have also been estimated to identify the changing relevance of these driving processes over the same period. Detected changes in 10-day moving averaged daily streamflow were finally attributed to changes in the most important hydro-meteorological drivers using multiple-regression models with increasing complexity. Earlier spring flow timing in both regions occur due to earlier snowmelt. ostlandet shows increased summer streamflow in catchments up to 1100 m a.s.l. and slightly increased winter streamflow in about 50% of the catchments. Trend patterns in Vestlandet are less coherent. The importance of rainfall has increased in both regions. Attribution of trends reveals that changes in rainfall and snowmelt can explain some streamflow changes where they are dominant processes (e.g., spring snowmelt in ostlandet and autumn rainfall in Vestlandet). Overall, the detected streamflow changes can be best explained by adding temperature trends as an additional predictor, indicating the relevance of additional driving processes such as increased glacier melt and evapotranspiration. KW - attribution KW - climate change KW - hydrological change KW - hydro-meteorological KW - driver KW - streamflow trend KW - trend analysis Y1 - 2021 U6 - https://doi.org/10.1002/hyp.14329 SN - 0885-6087 SN - 1099-1085 VL - 35 IS - 8 PB - Wiley CY - New York ER -