TY - THES A1 - Müller-Röber, Bernd T1 - Molekularphysiologische Ansätze zur Analyse primärer Stoffwechselwege und stomatärer Funktionsprozesse in Höheren Pflanzen : Darstellung der publizierten Forschungsergebnisse unter Berücksichtigung des allgemeinen Kenntnisstands und Einordnung in den wissenschaftlichen Gesamtzusammenhang Y1 - 1997 ER - TY - JOUR A1 - Gomez-Merino, Fernando Carlos A1 - Brearley, C. A. A1 - Ornatowska, Magdalena A1 - Abdel-Haliem, Mahmoud E. F. A1 - Zanor, Maria Ines A1 - Müller-Röber, Bernd T1 - AtDGK2, a novel diacylglycerol kinase from Arabidopsis thaliana, phosphorylates 1-stearoyl-2-arachidonoyl-sn- glycerol and 1,2-dioleoyl-sn-glycerol and exhibits cold-inducible gene expression N2 - Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DAG) to generate phosphatidic acid (PA). Both DAG and PA are implicated in signal transduction pathways. DGKs have been widely studied in animals, but their analysis in plants is fragmentary. Here, we report the cloning and biochemical characterization of AtDGK2, encoding DGK from Arabidopsis thaliana. AtDGK2 has a predicted molecular mass of 79.4 kDa and, like AtDGK1 previously reported, harbors two copies of a phorbol ester/DAG-binding domain in its N-terminal region. AtDGK2 belongs to a family of seven DGK genes in A. thaliana. AtDGK3 to AtDGK7 encode similar to55-kDa DGKs that lack a typical phorbol ester/DAG-binding domain. Phylogenetically, plant DGKs fall into three clusters. Members of all three clusters are widely expressed in vascular plants. Recombinant AtDGK2 was expressed in Escherichia coli and biochemically characterized. The enzyme phosphorylated 1,2-dioleoyl-sn-glycerol to yield PA, exhibiting Michaelis-Menten type kinetics. Estimated K-m and V-max values were 125 muM for DAG and 0.25 pmol of PA min(-1) mug(-1), respectively. The enzyme was maximally active at pH 7.2. Its activity was Mg2+-dependent and affected by the presence of detergents, salts, and the DGK inhibitor R59022, but not by Ca2+. AtDGK2 exhibited substrate preference for unsaturated DAG analogues (i.e. 1-stearoyl-2-arachidonoyl-sn-glycerol and 1,2- dioleoyl-sn-glycerol). The AtDGK2 gene is expressed in various tissues of the Arabidopsis plant, including leaves, roots, and flowers, as shown by Northern blot analysis and promoter-reporter gene fusions. We found that AtDGK2 is induced by exposure to low temperature (4degreesC), pointing to a role in cold signal transduction Y1 - 2004 SN - 0021-9258 ER - TY - JOUR A1 - Dreyer, Ingo A1 - Poree, Fabien A1 - Schneider, A. A1 - Mittelstadt, J. A1 - Bertl, Adam A1 - Sentenac, H. A1 - Thibaud, Jean-Baptiste A1 - Müller-Röber, Bernd T1 - Assembly of plant Shaker-like K-out channels requires two distinct sites of the channel alpha-subunit N2 - SKOR and GORK are outward-rectifying plant potassium channels from Arabidopsis thaliana. They belong to the Shaker superfamily of voltage-dependent K+ channels. Channels of this class are composed of four alpha-subunits and subunit assembly is a prerequisite for channel function. In this study the assembly mechanism of SKOR was investigated using the yeast two-hybrid system and functional assays in Xenopus oocytes and in yeast. We demonstrate that SKOR and GORK physically interact and assemble into heteromeric K-out channels. Deletion mutants and chimeric proteins generated from SKOR and the K-in channel alpha-subunit KAT1 revealed that the cytoplasmic C-terminus of SKOR determines channel assembly. Two domains thatchannel a-subunit KAT1 revealed that the cytoplasmic C-terminus of SKOR determines channel assembly. Two domains that are crucial for channel assembly were identified: i), a proximal interacting region comprising a putative cyclic nucleotide-binding domain together with 33 amino acids just upstream of this domain, and ii), a distal interacting region showing some resemblance to the K-T domain of KAT1. Both regions contributed differently to channel assembly. Whereas the proximal interacting region was found to be active on its own, the distal interacting region required an intact proximal interacting region to be active. K-out alpha-subunits did not assemble with K-in alpha-subunits because of the absence of interaction between their assembly sites Y1 - 2004 SN - 0006-3495 ER - TY - JOUR A1 - Witt, Isabell A1 - Zanor, Maria Ines A1 - Müller-Röber, Bernd T1 - Transcription factor function search : how do individual factors regulate agronomical important processes in plants? (Subproject A) Y1 - 2004 SN - 3-00-011587-0 ER - TY - JOUR A1 - Kohler, B. A1 - Müller-Röber, Bernd T1 - Remote control - cell and organ communication within plants Y1 - 2004 ER - TY - JOUR A1 - Becker, Dirk A1 - Geiger, D. A1 - Dunkel, M. A1 - Roller, A. A1 - Bertl, Adam A1 - Latz, A. A1 - Carpaneto, Armando A1 - Dietrich, Peter A1 - Roelfsema, M. R. G. A1 - Voelker, C. A1 - Schmidt, D. A1 - Müller-Röber, Bernd A1 - Czempinski, Katrin A1 - Hedrich, R. T1 - AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH- and Ca2+- dependent manner N2 - The Arabidopsis tandem-pore K+ (TPK) channels displaying four transmembrane domains and two pore regions share structural homologies with their animal counterparts of the KCNK family. In contrast to the Shaker-like Arabidopsis channels (six transmembrane domains/one pore region), the functional properties and the biological role of plant TPK channels have not been elucidated yet. Here, we show that AtTPK4 (KCO4) localizes to the plasma membrane and is predominantly expressed in pollen. AtTPK4 (KCO4) resembles the electrical properties of a voltage-independent K+ channel after expression in Xenopus oocytes and yeast. Hyperpolarizing as well as depolarizing membrane voltages elicited instantaneous K+ currents, which were blocked by extracellular calcium and cytoplasmic protons. Functional complementation assays using a K+ transport-deficient yeast confirmed the biophysical and pharmacological properties of the AtTPK4 channel. The features of AtTPK4 point toward a role in potassium homeostasis and membrane voltage control of the growing pollen tube. Thus, AtTPK4 represents a member of plant tandem-pore-K+ channels, resembling the characteristics of its animal counterparts as well as plant-specific features with respect to modulation of channel activity by acidosis and calcium Y1 - 2004 SN - 0027-8424 ER - TY - JOUR A1 - Gomez-Merino, Fernando Carlos A1 - Arana-Ceballos, Fernando Alberto A1 - Trejo-Tellez, L. I. A1 - Skirycz, Aleksandra A1 - Brearley, C. A. A1 - Dormann, P. A1 - Müller-Röber, Bernd T1 - Arabidopsis AtDGK7, the smallest member of plant diacylglycerol kinases (DGKs), displays unique biochemical features and saturates at low substrate concentration : the DGK inhibitor R59022 differentially affects AtDGK2 and AtDGK7 activity in vitro and alters plant growth and development N2 - Diacylglycerol kinase (DGK) regulates the level of the second messenger diacylglycerol and produces phosphatidic acid (PA), another signaling molecule. The Arabidopsis thaliana genome encodes seven putative diacylglycerol kinase isozymes (named AtDGK1 to -7), structurally falling into three major clusters. So far, enzymatic activity has not been reported for any plant Cluster II DGK. Here, we demonstrate that a representative of this cluster, AtDGK7, is biochemically active when expressed as a recombinant protein in Escherichia coli. AtDGK7, encoded by gene locus At4g30340, contains 374 amino acids with an apparent molecular mass of 41.2 kDa. AtDGK7 harbors an N-terminal catalytic domain, but in contrast to various characterized DGKs (including AtDGK2), it lacks a cysteine-rich domain at its N terminus, and, importantly, its C-terminal DGK accessory domain is incomplete. Recombinant AtDGK7 expressed in E. coli exhibits Michaelis-Menten type kinetics with 1,2-dioleoyl-sn-glycerol as substrate. AtDGK7 activity was affected by pH, detergents, and the DGK inhibitor R59022. We demonstrate that both AtDGK2 and AtDGK7 phosphorylate diacylglycerol molecular species that are typically found in plants, indicating that both enzymes convert physiologically relevant substrates. AtDGK7 is expressed throughout the Arabidopsis plant, but expression is strongest in flowers and young seedlings. Expression of AtDGK2 is transiently induced by wounding. R59022 at similar to 80 mu M inhibits root elongation and lateral root formation and reduces plant growth, indicating that DGKs play an important role in plant development Y1 - 2005 SN - 0021-9258 ER - TY - JOUR A1 - Michard, Erwan A1 - Lacombe, Benoît A1 - Poree, Fabien A1 - Müller-Röber, Bernd A1 - Sentenac, Hervé A1 - Thibaud, Jean-Baptiste A1 - Dreyer, Ingo T1 - A unique voltage sensor sensitizes the potassium channel AKT2 to phosphoregulation N2 - Among all voltage-gated K+ channels from the model plant Arabidopsis thaliana, the weakly rectifying K+ channel (K-weak channel) AKT2 displays unique gating properties. AKT2 is exceptionally regulated by phosphorylation: when nonphosphorylated AKT2 behaves as an inward-rectifying potassium channel; phosphorylation of AKT2 abolishes inward rectification by shifting its activation threshold far positive (>200 mV) so that it closes only at voltages positive of + 100 mV. In its phosphorylated form, AKT2 is thus locked in the open state in the entire physiological voltage range. To understand the molecular grounds of this unique gating behavior, we generated chimeras between AKT2 and the conventional inward-rectifying channel KAT1. The transfer of the pore from KAT1 to AKT2 altered the permeation properties of the channel. However, the gating properties were unaffected, suggesting that the pore region of AKT2 is not responsible for the unique K-weak gating. Instead, a lysine residue in S4, highly conserved among all K-weak channels but absent from other plant K+ channels, was pinpointed in a site-directed mutagenesis approach. Substitution of the lysine by serine or aspartate abolished the "open-lock" characteristic and converted AKT2 into an inward- rectifying channel. Interestingly, phosphoregulation of the mutant AKT2-K197S appeared to be similar to that of the K-in channel KAT1: as suggested by mimicking the phosphorylated and dephosphorylated states, phosphorylation induced a shift of the activation threshold of AKT2-K197S by about +50 mV. We conclude that the lysine residue K197 sensitizes AKT2 to phosphoregulation. The phosphorylation-induced reduction of the activation energy in AKT2 is similar to 6 kT larger than in the K197S mutant. It is discussed that this hypersensitive response of AKT2 to phosphorylation equips a cell with the versatility to establish a potassium gradient and to make efficient use of it Y1 - 2005 ER - TY - JOUR A1 - Lin, W. H. A1 - Wang, Y. A1 - Müller-Röber, Bernd A1 - Brearley, C. A. A1 - Xu, Z. H. A1 - Xue, H. W. T1 - At5PTase13 modulates cotyledon vein development through regulating auxin homeostasis N2 - Phosphatidylinositol signaling pathway and the relevant metabolites are known to be critical to the modulation of different aspects of plant growth, development, and stress responses. Inositol polyphosphate 5-phosphatase is a key enzyme involved in phosphatidylinositol metabolism and is encoded by an At5PTase gene family in Arabidopsis thaliana. A previous study shows that At5PTase11 mediates cotyledon vascular development probably through the regulation of intracellular calcium levels. In this study, we provide evidence that At5PTase13 modulates the development of cotyledon veins through its regulation of auxin homeostasis. A T-DNA insertional knockout mutant, At5pt13-1, showed a defect in development of the cotyledon vein, which was rescued completely by exogenous auxin and in part by brassinolide, a steroid hormone. Furthermore, the mutant had reduced auxin content and altered auxin accumulation in seedlings revealed by the DR5:beta-glucuronidase fusion construct in seedlings. In addition, microarray analysis shows that the transcription of key genes responsible for auxin biosynthesis and transport was altered in At5pt13-1. The At5pt13-1 mutant was also less sensitive to auxin inhibition of root elongation. These results suggest that At5PTase13 regulates the homeostasis of auxin, a key hormone controlling vascular development in plants Y1 - 2005 SN - 0032-0889 ER - TY - JOUR A1 - Riano-Pachon, Diego Mauricio A1 - Dreyer, Ingo A1 - Müller-Röber, Bernd T1 - Orphan transcripts in Arabidopsis thaliana : identification of several hundred previously unrecognized genes N2 - Expressed sequence tags (ESTs) represent a huge resource for the discovery of previously unknown genetic information and functional genome assignment. In this study we screened a collection of 178 292 ESTs from Arabidopsis thaliana by testing them against previously annotated genes of the Arabidopsis genome. We identified several hundreds of new transcripts that match the Arabidopsis genome at so far unassigned loci. The transcriptional activity of these loci was independently confirmed by comparison with the Salk Whole Genome Array Data. To a large extent, the newly identified transcriptionally active genomic regions do not encode 'classic' proteins, but instead generate non-coding RNAs and/or small peptide-coding RNAs of presently unknown biological function. More than 560 transcripts identified in this study are not represented by the Affymetrix GeneChip arrays currently widely used for expression profiling in A. thaliana. Our data strongly support the hypothesis that numerous previously unknown genes exist in the Arabidopsis genome Y1 - 2005 SN - 0960-7412 ER -