TY - JOUR A1 - Kliem, Bernhard A1 - Su, Y. N. A1 - van Ballegooijen, A. A. A1 - DeLuca, E. E. T1 - Magnetohydrodynamic modeling of the solar eruption on 2010 APRIL 8 JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - The structure of the coronal magnetic field prior to eruptive processes and the conditions for the onset of eruption are important issues that can be addressed through studying the magnetohydrodynamic (MHD) stability and evolution of nonlinear force-free field (NLFFF) models. This paper uses data-constrained NLFFF models of a solar active region (AR) that erupted on 2010 April 8 as initial conditions in MHD simulations. These models, constructed with the techniques of flux rope insertion and magnetofrictional relaxation (MFR), include a stable, an approximately marginally stable, and an unstable configuration. The simulations confirm previous related results of MFR runs, particularly that stable flux rope equilibria represent key features of the observed pre-eruption coronal structure very well, and that there is a limiting value of the axial flux in the rope for the existence of stable NLFFF equilibria. The specific limiting value is located within a tighter range, due to the sharper discrimination between stability and instability by the MHD description. The MHD treatment of the eruptive configuration yields a very good agreement with a number of observed features, like the strongly inclined initial rise path and the close temporal association between the coronal mass ejection and the onset of flare reconnection. Minor differences occur in the velocity of flare ribbon expansion and in the further evolution of the inclination; these can be eliminated through refined simulations. We suggest that the slingshot effect of horizontally bent flux in the source region of eruptions can contribute significantly to the inclination of the rise direction. Finally, we demonstrate that the onset criterion, formulated in terms of a threshold value for the axial flux in the rope, corresponds very well to the threshold of the torus instability in the considered AR. KW - magnetohydrodynamics (MHD) KW - Sun: corona KW - Sun: coronal mass ejections (CMEs) KW - Sun: filaments, prominences KW - Sun: flares KW - Sun: magnetic fields Y1 - 2013 U6 - https://doi.org/10.1088/0004-637X/779/2/129 SN - 0004-637X SN - 1538-4357 VL - 779 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Cheng, X. A1 - Ding, M. D. A1 - Zhang, J. A1 - Sun, X. D. A1 - Guo, Y. A1 - Wang, Yi-Ming A1 - Kliem, Bernhard A1 - Deng, Y. Y. T1 - Formation of a double-decker magnetic flux rope in the sigmoidal solar active region 11520 JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line a half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1-0.6 km s(-1). The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About 2 hr before the eruption, indications of a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region. KW - Sun: corona KW - Sun: coronal mass ejections (CMEs) KW - Sun: filaments, prominences KW - Sun: magnetic fields Y1 - 2014 U6 - https://doi.org/10.1088/0004-637X/789/2/93 SN - 0004-637X SN - 1538-4357 VL - 789 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Kliem, Bernhard A1 - Lin, J. A1 - Forbes, T. G. A1 - Priest, E. R. A1 - Toeroek, T. T1 - Catastrophe versus instability for the eruption of a toroadal solar magnetic flux JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - The onset of a solar eruption is formulated here as either a magnetic catastrophe or as an instability. Both start with the same equation of force balance governing the underlying equilibria. Using a toroidal flux rope in an external bipolar or quadrupolar field as a model for the current-carrying flux, we demonstrate the occurrence of a fold catastrophe by loss of equilibrium for several representative evolutionary sequences in the stable domain of parameter space. We verify that this catastrophe and the torus instability occur at the same point; they are thus equivalent descriptions for the onset condition of solar eruptions. KW - magnetohydrodynamics (MHD) KW - Sun: corona KW - Sun: coronal mass ejections (CMEs) KW - Sun: filaments, prominences KW - Sun: flares KW - Sun: magnetic fields Y1 - 2014 U6 - https://doi.org/10.1088/0004-637X/789/1/46 SN - 0004-637X SN - 1538-4357 VL - 789 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - van Driel-Gesztelyi, L. A1 - Baker, Daniel N. A1 - Toeroek, T. A1 - Pariat, E. A1 - Green, L. M. A1 - Williams, D. R. A1 - Carlyle, J. A1 - Valori, G. A1 - Demoulin, P. A1 - Kliem, Bernhard A1 - Long, D. M. A1 - Matthews, S. A. A1 - Malherbe, J. -M. T1 - Coronal magnetic reconnection driven by CME expansion-the 2011 June 7 event JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Coronal mass ejections (CMEs) erupt and expand in a magnetically structured solar corona. Various indirect observational pieces of evidence have shown that the magnetic field of CMEs reconnects with surrounding magnetic fields, forming, e.g., dimming regions distant from the CME source regions. Analyzing Solar Dynamics Observatory (SDO) observations of the eruption from AR 11226 on 2011 June 7, we present the first direct evidence of coronal magnetic reconnection between the fields of two adjacent active regions during a CME. The observations are presented jointly with a data-constrained numerical simulation, demonstrating the formation/intensification of current sheets along a hyperbolic flux tube at the interface between the CME and the neighboring AR 11227. Reconnection resulted in the formation of new magnetic connections between the erupting magnetic structure from AR 11226 and the neighboring active region AR 11227 about 200 Mm from the eruption site. The onset of reconnection first becomes apparent in the SDO/AIA images when filament plasma, originally contained within the erupting flux rope, is redirected toward remote areas in AR 11227, tracing the change of large-scale magnetic connectivity. The location of the coronal reconnection region becomes bright and directly observable at SDO/AIA wavelengths, owing to the presence of down-flowing cool, dense (1010 cm(-3)) filament plasma in its vicinity. The high-density plasma around the reconnection region is heated to coronal temperatures, presumably by slow-mode shocks and Coulomb collisions. These results provide the first direct observational evidence that CMEs reconnect with surrounding magnetic structures, leading to a large-scale reconfiguration of the coronal magnetic field. KW - magnetic reconnection KW - magnetohydrodynamics (MHD) KW - Sun: corona KW - Sun: coronal mass ejections (CMEs) KW - Sun: magnetic fields KW - Sun: UV radiation Y1 - 2014 U6 - https://doi.org/10.1088/0004-637X/788/1/85 SN - 0004-637X SN - 1538-4357 VL - 788 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Liu, Rui A1 - Kliem, Bernhard A1 - Titov, Viacheslav S. A1 - Chen, Jun A1 - Wang, Yuming A1 - Wang, Haimin A1 - Liu, Chang A1 - Xu, Yan A1 - Wiegelmann, Thomas T1 - STRUCTURE, STABILITY, AND EVOLUTION OF MAGNETIC FLUX ROPES FROM THE PERSPECTIVE OF MAGNETIC TWIST JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We investigate the evolution of NOAA Active Region (AR) 11817 during 2013 August 10–12, when it developed a complex field configuration and produced four confined, followed by two eruptive, flares. These C-and-above flares are all associated with a magnetic flux rope (MFR) located along the major polarity inversion line, where shearing and converging photospheric flows are present. Aided by the nonlinear force-free field modeling, we identify the MFR through mapping magnetic connectivities and computing the twist number ${{ \mathcal T }}_{w}$ for each individual field line. The MFR is moderately twisted ($| {{ \mathcal T }}_{w}| \lt 2$) and has a well-defined boundary of high squashing factor Q. We found that the field line with the extremum $| {{ \mathcal T }}_{w}| $ is a reliable proxy of the rope axis, and that the MFR's peak $| {{ \mathcal T }}_{w}| $ temporarily increases within half an hour before each flare while it decreases after the flare peak for both confined and eruptive flares. This pre-flare increase in $| {{ \mathcal T }}_{w}| $ has little effect on the AR's free magnetic energy or any other parameters derived for the whole region, due to its moderate amount and the MFR's relatively small volume, while its decrease after flares is clearly associated with the stepwise decrease in the whole region's free magnetic energy due to the flare. We suggest that ${{ \mathcal T }}_{w}$ may serve as a useful parameter in forewarning the onset of eruption, and therefore, the consequent space weather effects. The helical kink instability is identified as the prime candidate onset mechanism for the considered flares. KW - coronal mass ejections (CMEs) KW - Sun: corona KW - Sun: filaments, pominences KW - Sun: flares KW - Sun: magnetic fields Y1 - 2016 U6 - https://doi.org/10.3847/0004-637X/818/2/148 SN - 0004-637X SN - 1538-4357 VL - 818 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Martinez Gonzalez, M. J. A1 - Pastor Yabar, A. A1 - Lagg, A. A1 - Asensio Ramos, A. A1 - Collados Vera, M. A1 - Solanki, S. K. A1 - Balthasar, H. A1 - Berkefeld, T. A1 - Denker, Carsten A1 - Doerr, H. P. A1 - Feller, A. A1 - Franz, M. A1 - González Manrique, Sergio Javier A1 - Hofmann, A. A1 - Kneer, F. A1 - Kuckein, Christoph A1 - Louis, R. A1 - von der Lühe, O. A1 - Nicklas, H. A1 - Orozco, D. A1 - Rezaei, R. A1 - Schlichenmaier, R. A1 - Schmidt, D. A1 - Schmidt, W. A1 - Sigwarth, M. A1 - Sobotka, M. A1 - Soltau, D. A1 - Staude, J. A1 - Strassmeier, Klaus G. A1 - Verma, Meetu A1 - Waldman, T. A1 - Volkmer, R. T1 - Inference of magnetic fields in the very quiet Sun JF - Journal of geophysical research : Earth surface N2 - Context. Over the past 20 yr, the quietest areas of the solar surface have revealed a weak but extremely dynamic magnetism occurring at small scales (<500 km), which may provide an important contribution to the dynamics and energetics of the outer layers of the atmosphere. Understanding this magnetism requires the inference of physical quantities from high-sensitivity spectro-polarimetric data with high spatio-temporal resolution. Aims. We present high-precision spectro-polarimetric data with high spatial resolution (0.4") of the very quiet Sun at 1.56 mu m obtained with the GREGOR telescope to shed some light on this complex magnetism. Methods. We used inversion techniques in two main approaches. First, we assumed that the observed profiles can be reproduced with a constant magnetic field atmosphere embedded in a field-free medium. Second, we assumed that the resolution element has a substructure with either two constant magnetic atmospheres or a single magnetic atmosphere with gradients of the physical quantities along the optical depth, both coexisting with a global stray-light component. Results. Half of our observed quiet-Sun region is better explained by magnetic substructure within the resolution element. However, we cannot distinguish whether this substructure comes from gradients of the physical parameters along the line of sight or from horizontal gradients (across the surface). In these pixels, a model with two magnetic components is preferred, and we find two distinct magnetic field populations. The population with the larger filling factor has very weak (similar to 150 G) horizontal fields similar to those obtained in previous works. We demonstrate that the field vector of this population is not constrained by the observations, given the spatial resolution and polarimetric accuracy of our data. The topology of the other component with the smaller filling factor is constrained by the observations for field strengths above 250 G: we infer hG fields with inclinations and azimuth values compatible with an isotropic distribution. The filling factors are typically below 30%. We also find that the flux of the two polarities is not balanced. From the other half of the observed quiet-Sun area similar to 50% are two-lobed Stokes V profiles, meaning that 23% of the field of view can be adequately explained with a single constant magnetic field embedded in a non-magnetic atmosphere. The magnetic field vector and filling factor are reliable inferred in only 50% based on the regular profiles. Therefore, 12% of the field of view harbour hG fields with filling factors typically below 30%. At our present spatial resolution, 70% of the pixels apparently are non-magnetised. KW - Sun: atmosphere KW - Sun: magnetic fields KW - techniques: polarimetric KW - methods: observational Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201628449 SN - 1432-0746 VL - 596 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Verma, Meetu A1 - Denker, Carsten A1 - Balthasar, H. A1 - Kuckein, Christoph A1 - González Manrique, Sergio Javier A1 - Sobotka, M. A1 - Gonzalez, N. Bello A1 - Hoch, S. A1 - Diercke, Andrea A1 - Kummerow, Philipp A1 - Berkefeld, T. A1 - Collados Vera, M. A1 - Feller, A. A1 - Hofmann, A. A1 - Kneer, F. A1 - Lagg, A. A1 - Löhner-Böttcher, J. A1 - Nicklas, H. A1 - Pastor Yabar, A. A1 - Schlichenmaier, R. A1 - Schmidt, D. A1 - Schmidt, W. A1 - Schubert, M. A1 - Sigwarth, M. A1 - Solanki, S. K. A1 - Soltau, D. A1 - Staude, J. A1 - Strassmeier, Klaus G. A1 - Volkmer, R. A1 - von der Lühe, O. A1 - Waldmann, T. T1 - Horizontal flow fields in and around a small active region The transition period between flux emergence and decay JF - Polymers N2 - Context. The solar magnetic field is responsible for all aspects of solar activity. Thus, emergence of magnetic flux at the surface is the first manifestation of the ensuing solar activity. Aims. Combining high-resolution and synoptic observations aims to provide a comprehensive description of flux emergence at photospheric level and of the growth process that eventually leads to a mature active region. Methods. The small active region NOAA 12118 emerged on 2014 July 17 and was observed one day later with the 1.5-m GREGOR solar telescope on 2014 July 18. High-resolution time-series of blue continuum and G-band images acquired in the blue imaging channel (BIC) of the GREGOR Fabry-Perot Interferometer (GFPI) were complemented by synoptic line-of-sight magnetograms and continuum images obtained with the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). Horizontal proper motions and horizontal plasma velocities were computed with local correlation tracking (LCT) and the differential affine velocity estimator (DAVE), respectively. Morphological image processing was employed to measure the photometric and magnetic area, magnetic flux, and the separation profile of the emerging flux region during its evolution. Results. The computed growth rates for photometric area, magnetic area, and magnetic flux are about twice as high as the respective decay rates. The space-time diagram using HMI magnetograms of five days provides a comprehensive view of growth and decay. It traces a leaf-like structure, which is determined by the initial separation of the two polarities, a rapid expansion phase, a time when the spread stalls, and a period when the region slowly shrinks again. The separation rate of 0.26 km s(-1) is highest in the initial stage, and it decreases when the separation comes to a halt. Horizontal plasma velocities computed at four evolutionary stages indicate a changing pattern of inflows. In LCT maps we find persistent flow patterns such as outward motions in the outer part of the two major pores, a diverging feature near the trailing pore marking the site of upwelling plasma and flux emergence, and low velocities in the interior of dark pores. We detected many elongated rapidly expanding granules between the two major polarities, with dimensions twice as large as the normal granules. KW - Sun: photosphere KW - Sun: magnetic fields KW - techniques: image processing KW - methods: data analysis Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201628380 SN - 1432-0746 VL - 596 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Verma, Meetu A1 - Denker, Carsten A1 - Böhm, F. A1 - Balthasar, H. A1 - Fischer, C. E. A1 - Kuckein, Christoph A1 - Gonzalez, N. Bello A1 - Berkefeld, T. A1 - Collados Vera, M. A1 - Diercke, Andrea A1 - Feller, A. A1 - Gonzalez Manrique, Sergio Javier A1 - Hofmann, A. A1 - Lagg, A. A1 - Nicklas, H. A1 - Orozco Suarez, D. A1 - Pator Yabar, A. A1 - Rezaei, R. A1 - Schlichenmaier, R. A1 - Schmidt, D. A1 - Schmidt, W. A1 - Sigwarth, M. A1 - Sobotka, M. A1 - Solanki, S. K. A1 - Soltau, D. A1 - Staude, J. A1 - Strassmeier, Klaus G. A1 - Volkmer, R. A1 - von der Lühe, O. A1 - Waldmann, T. T1 - Flow and magnetic field properties in the trailing sunspots of active region NOAA 12396 JF - Astronomische Nachrichten = Astronomical notes N2 - Improved measurements of the photospheric and chromospheric three-dimensional magnetic and flow fields are crucial for a precise determination of the origin and evolution of active regions. We present an illustrative sample of multi-instrument data acquired during a two-week coordinated observing campaign in August 2015 involving, among others, the GREGOR solar telescope (imaging and near-infrared spectroscopy) and the space missions Solar Dynamics Observatory (SDO) and Interface Region Imaging Spectrograph (IRIS). The observations focused on the trailing part of active region NOAA 12396 with complex polarity inversion lines and strong intrusions of opposite polarity flux. The GREGOR Infrared Spectrograph (GRIS) provided Stokes IQUV spectral profiles in the photospheric Si i.1082.7 nm line, the chromospheric He I lambda 1083.0 nm triplet, and the photospheric Ca I lambda 1083.9 nm line. Carefully calibrated GRIS scans of the active region provided maps of Doppler velocity and magnetic field at different atmospheric heights. We compare quick-look maps with those obtained with the " Stokes Inversions based on Response functions" (SIR) code, which furnishes deeper insight into the magnetic properties of the region. We find supporting evidence that newly emerging flux and intruding opposite polarity flux are hampering the formation of penumbrae, i.e., a penumbra fully surrounding a sunspot is only expected after cessation of flux emergence in proximity to the sunspots. (C) 2016 WILEY-VCH Verlag GmbH& Co.KGaA, Weinheim KW - Sun: magnetic fields KW - sunspots KW - methods: data analysis KW - techniques: polarimetric KW - techniques: spectroscopic Y1 - 2016 U6 - https://doi.org/10.1002/asna.201612447 SN - 0004-6337 SN - 1521-3994 VL - 337 SP - 1090 EP - 1098 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Denker, Carsten A1 - Heibel, C. A1 - Rendtel, J. A1 - Arlt, K. A1 - Balthasar, H. A1 - Diercke, Andrea A1 - Gonzalez Manrique, Sergio Javier A1 - Hofmann, A. A1 - Kuckein, Christoph A1 - Önel, H. A1 - Valliappan, Senthamizh Pavai A1 - Staude, J. A1 - Verma, Meetu T1 - Solar physics at the Einstein Tower JF - Astronomische Nachrichten = Astronomical notes KW - history and philosophy of astronomy KW - Sun: photosphere KW - Sun: magnetic fields KW - techniques: spectroscopic KW - telescopes Y1 - 2016 U6 - https://doi.org/10.1002/asna.201612442 SN - 0004-6337 SN - 1521-3994 VL - 337 SP - 1105 EP - 1113 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Nishikawa, Ken-Ichi A1 - Frederiksen, J. T. A1 - Nordlund, A. A1 - Mizuno, Y. A1 - Hardee, P. E. A1 - Niemiec, J. A1 - Gomez, J. L. A1 - Dutan, I. A1 - Meli, A. A1 - Sol, H. A1 - Pohl, Martin A1 - Hartmann, D. H. T1 - EVOLUTION OF GLOBAL RELATIVISTIC JETS: COLLIMATIONS AND EXPANSION WITH kKHI AND THE WEIBEL INSTABILITY JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - In the study of relativistic jets one of the key open questions is their interaction with the environment. Here. we study the initial evolution of both electron-proton (e(-) - p(+)) and electron-positron (e(+/-)) relativistic jets, focusing on their lateral interaction with ambient plasma. We follow the evolution of toroidal magnetic fields generated by both the kinetic Kelvin-Helmholtz and Mushroom instabilities. For an e(-) - p(+) jet, the induced magnetic field collimates the jet and electrons are perpendicularly accelerated. As the instabilities saturate and subsequently weaken, the magnetic polarity switches from clockwise to counterclockwise in the middle of the jet. For an e(+/-) jet, we find strong mixing of electrons and positrons with the ambient plasma, resulting in the creation of a bow shock. The merging of current filaments generates density inhomogeneities that. initiate a forward shock. Strong jet-ambient plasma mixing prevents a full development of the jet (on the scale studied), revealing evidence for both jet collimation and particle acceleration in the forming bow shock. Differences in the magnetic field structure generated by e(-) - p(+) and e(+/-) jets may contribute to the polarization properties of the observed emission in AGN jets and gamma-ray bursts. KW - acceleration of particles KW - plasmas KW - radiation mechanisms: non-thermal KW - relativistic processes KW - stars: jets KW - Sun: magnetic fields Y1 - 2016 U6 - https://doi.org/10.3847/0004-637X/820/2/94 SN - 0004-637X SN - 1538-4357 VL - 820 PB - IOP Publ. Ltd. CY - Bristol ER -