TY - JOUR A1 - Unuabonah, Emmanuel I. A1 - El-Khaiary, Mohammad I. A1 - Olu-Owolabi, Bamidele I. A1 - Adebowale, Kayode O. T1 - Predicting the dynamics and performance of a polymer-clay based composite in a fixed bed system for the removal of lead (II) ion JF - Chemical engineering research and design N2 - A polymer-clay based composite adsorbent was prepared from locally obtained kaolinite clay and polyvinyl alcohol. The composite adsorbent was used to remove lead (II) ions from aqueous solution in a fixed bed mode. The increase in bed height and initial metal ion concentration increased the adsorption capacity of lead (II) and the volume of aqueous solution treated at 50% breakthrough. However, the adsorption capacity was reduced by almost 16.5% with the simultaneous presence of Ca2+/Pb2+ and Na+/Pb2+ in the aqueous solution. Regeneration of the adsorbent with 0.1 M of HCl also reduced its adsorption capacity to 75.1%. Adsorption of lead (II) ions onto the polymer-clay composite adsorbent in the presence of Na+ and Ca2+ electrolyte increased the rate of mass transfer, probably due to competition between cationic species in solution for adsorption sites. Regeneration further increased the rate of mass transfer as a result of reduced adsorption sites after the regeneration process. The length of the mass transfer zone was found to increase with increasing bed height but did not change with increasing the initial metal ion concentration. The models of Yoon-Nelson, Thomas, and Clark were found to give good fit to adsorption data. On the other hand, Bohart-Adams model was found to be a poor predictor for the column operation. The polymer-clay composite adsorbent has a good potential for the removal of lead (II) ions from highly polluted aqueous solutions. KW - Fixed bed KW - Adsorption models KW - Polymer-clay composite KW - Regeneration KW - Breakthrough KW - Mass transfer zone Y1 - 2012 U6 - https://doi.org/10.1016/j.cherd.2011.11.009 SN - 0263-8762 VL - 90 IS - 8 SP - 1105 EP - 1115 PB - Inst. of Electr. and Electronics Engineers CY - Rugby ER - TY - JOUR A1 - Caron, Maria Mercedes A1 - De Frenne, Pieter A1 - Brunet, Jörg A1 - Chabrerie, Olivier A1 - Cousins, Sara A. O. A1 - Decocq, Guillaume A1 - Diekmann, Martin A1 - Graae, Bente Jessen A1 - Heinken, Thilo A1 - Kolb, Annette A1 - Lenoir, Jonathan A1 - Naaf, Tobias A1 - Plue, Jan A1 - Selvi, Federico A1 - Wulf, Monika A1 - Verheyen, Kris T1 - Divergent regeneration responses of two closely related tree species to direct abiotic and indirect biotic effects of climate change JF - Forest ecology and management N2 - Changing temperature and precipitation can strongly influence plant reproduction. However, also biotic interactions might indirectly affect the reproduction and recruitment success of plants in the context of climate change. Information about the interactive effects of changes in abiotic and biotic factors is essential, but still largely lacking, to better understand the potential effects of a changing climate on plant populations. Here we analyze the regeneration from seeds of Acer platanoides and Acer pseudoplatanus, two currently secondary forest tree species from seven regions along a 2200 km-wide latitudinal gradient in Europe. We assessed the germination, seedling survival and growth during two years in a common garden experiment where temperature, precipitation and competition with the understory vegetation were manipulated. A. platanoides was more sensitive to changes in biotic conditions while A. pseudoplatanus was affected by both abiotic and biotic changes. In general, competition reduced (in A. platanoides) and warming enhanced (in A. pseudoplatanus) germination and survival, respectively. Reduced competition strongly increased the growth of A. platanoides seedlings. Seedling responses were independent of the conditions experienced by the mother tree during seed production and maturation. Our results indicate that, due to the negative effects of competition on the regeneration of A. platanoides, it is likely that under stronger competition (projected under future climatic conditions) this species will be negatively affected in terms of germination, survival and seedling biomass. Climate-change experiments including both abiotic and biotic factors constitute a key step forward to better understand the response of tree species' regeneration to climate change. (C) 2015 Elsevier B.V. All rights reserved. KW - Acer KW - Regeneration KW - Latitudinal gradient KW - Temperature KW - Precipitation KW - Competition Y1 - 2015 U6 - https://doi.org/10.1016/j.foreco.2015.01.003 SN - 0378-1127 SN - 1872-7042 VL - 342 SP - 21 EP - 29 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Unuabonah, Emmanuel I. A1 - Kolawole, Matthew O. A1 - Agunbiade, Foluso O. A1 - Omorogie, Martins O. A1 - Koko, Daniel T. A1 - Ugwuja, Chidinma G. A1 - Ugege, Leonard E. A1 - Oyejide, Nicholas E. A1 - Günter, Christina A1 - Taubert, Andreas T1 - Novel metal-doped bacteriostatic hybrid clay composites for point-of-use disinfection of water JF - Journal of Environmental Chemical Engineering N2 - This study reports the facile microwave-assisted thermal preparation of novel metal-doped hybrid clay composite adsorbents consisting of Kaolinite clay, Carica papaya seeds and/or plantain peels (Musa paradisiaca) and ZnCl2. Fourier Transformed IR spectroscopy, X-ray diffraction, Scanning Electron Microscopy and Brunauer-Emmett-Teller (BET) analysis are employed to characterize these composite adsorbents. The physicochemical analysis of these composites suggests that they act as bacteriostatic rather than bacteriacidal agents. This bacterostactic action is induced by the ZnO phase in the composites whose amount correlates with the efficacy of the composite. The composite prepared with papaya seeds (PS-HYCA) provides the best disinfection efficacy (when compared with composite prepared with Musa paradisiaca peels-PP-HYCA) against gram-negative enteric bacteria with a breakthrough time of 400 and 700 min for the removal of 1.5 x10(6) cfu/mL S. typhi and V. cholerae from water respectively. At 10(3) cfu/mL of each bacterium in solution, 2 g of both composite adsorbents kept the levels the bacteria in effluent solutions at zero for up to 24 h. Steam regeneration of 2 g of bacteria-loaded Carica papaya prepared composite adsorbent shows a loss of ca. 31% of its capacity even after the 3rd regeneration cycle of 25 h of service time. The composite adsorbent prepared with Carica papaya seeds will be useful for developing simple point-of-use water treatment systems for water disinfection application. This composite adsorbent is comparatively of good performance and shows relatively long hydraulic contact times and is expected to minimize energy intensive traditional treatment processes. KW - Kaolinite KW - Composites KW - Bacteria KW - Breakthrough time KW - Regeneration Y1 - 2017 U6 - https://doi.org/10.1016/j.jece.2017.04.017 SN - 2213-3437 VL - 5 SP - 2128 EP - 2141 PB - Elsevier CY - Oxford ER -