TY - JOUR A1 - Jia, He A1 - Friebe, Christian A1 - Schubert, Ulrich S. A1 - Zhang, Xiaozhe A1 - Quan, Ting A1 - Lu, Yan A1 - Gohy, Jean-Francois T1 - Core-Shell Nanoparticles with a Redox Polymer Core and a Silica Porous Shell as High-Performance Cathode Material for Lithium-Ion Batteries JF - Energy technology : generation, conversion, storage, distribution N2 - A facile and novel method for the fabrication of core-shell nanoparticles (PTMA@SiO2) based on a poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA) core and a porous SiO2 shell is reported. The core-shell nanoparticles are further self-assembled with negatively charged multi-walled carbon nanotubes (MWCNTs), which results in the formation of a free-standing cathode electrode. The porous SiO2 shell not only effectively improves the stability of the linear PTMA redox polymer with low molar mass in organic electrolytes but also leads to the uniform dispersion of PTMA active units in the MWCNTs conductive network. The PTMA@SiO2@MWCNT composite electrode exhibits a specific capacity as high as 73.8 mAh g at 1 C and only 0.11% capacity loss per cycle at a rate of 2 C. KW - composite electrodes KW - core-shell nanoparticles KW - energy storage KW - lithium-ion batteries KW - redox polymers Y1 - 2019 U6 - https://doi.org/10.1002/ente.201901040 SN - 2194-4288 SN - 2194-4296 VL - 8 IS - 3 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Ilic, Ivan K. A1 - Tsouka, Alexandra A1 - Perovic, Milena A1 - Hwang, Jinyeon A1 - Heil, Tobias A1 - Löffler, Felix A1 - Oschatz, Martin A1 - Antonietti, Markus A1 - Liedel, Clemens T1 - Sustainable cathodes for Lithium-ion energy storage devices based on tannic acid-toward ecofriendly energy storage JF - Advanced sustainable systems N2 - The use of organic materials with reversible redox activity holds enormous potential for next-generation Li-ion energy storage devices. Yet, most candidates are not truly sustainable, i.e., not derived from renewable feedstock or made in benign reactions. Here an attempt is reported to resolve this issue by synthesizing an organic cathode material from tannic acid and microporous carbon derived from biomass. All constituents, including the redox-active material and conductive carbon additive, are made from renewable resources. Using a simple, sustainable fabrication method, a hybrid material is formed. The low cost and ecofriendly material shows outstanding performance with a capacity of 108 mAh g(-1) at 0.1 A g(-1) and low capacity fading, retaining approximately 80% of the maximum capacity after 90 cycles. With approximately 3.4 V versus Li+/Li, the cells also feature one of the highest reversible redox potentials reported for biomolecular cathodes. Finally, the quinone-catecholate redox mechanism responsible for the high capacity of tannic acid is confirmed by electrochemical characterization of a model compound similar to tannic acid but without catecholic groups. KW - biomass KW - electrochemistry KW - energy storage KW - redox chemistry KW - sustainability KW - tannic acid Y1 - 2020 U6 - https://doi.org/10.1002/adsu.202000206 SN - 2366-7486 VL - 5 IS - 1 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Ning, Jiaoyi A1 - Yu, Hongtao A1 - Mei, Shilin A1 - Schütze, Yannik A1 - Risse, Sebastian A1 - Kardjilov, Nikolay A1 - Hilger, André A1 - Manke, Ingo A1 - Bande, Annika A1 - Ruiz, Victor G. A1 - Dzubiella, Joachim A1 - Meng, Hong A1 - Lu, Yan T1 - Constructing binder- and carbon additive-free organosulfur cathodes based on conducting thiol-polymers through electropolymerization for lithium-sulfur batteries JF - ChemSusChem N2 - Herein, the concept of constructing binder- and carbon additive-free organosulfur cathode was proved based on thiol-containing conducting polymer poly(4-(thiophene-3-yl) benzenethiol) (PTBT). The PTBT featured the polythiophene-structure main chain as a highly conducting framework and the benzenethiol side chain to copolymerize with sulfur and form a crosslinked organosulfur polymer (namely S/PTBT). Meanwhile, it could be in-situ deposited on the current collector by electro-polymerization, making it a binder-free and free-standing cathode for Li-S batteries. The S/PTBT cathode exhibited a reversible capacity of around 870 mAh g(-1) at 0.1 C and improved cycling performance compared to the physically mixed cathode (namely S&PTBT). This multifunction cathode eliminated the influence of the additives (carbon/binder), making it suitable to be applied as a model electrode for operando analysis. Operando X-ray imaging revealed the remarkable effect in the suppression of polysulfides shuttle via introducing covalent bonds, paving the way for the study of the intrinsic mechanisms in Li-S batteries. KW - electrochemistry KW - energy storage KW - lithium-sulfur batteries KW - operando KW - studies KW - organosulfur Y1 - 2022 U6 - https://doi.org/10.1002/cssc.202200434 SN - 1864-5631 SN - 1864-564X VL - 15 IS - 14 PB - Wiley CY - Weinheim ER -