TY - JOUR A1 - Hoang, Hoa T. A1 - Mertens, Monique A1 - Wessig, Pablo A1 - Sellrie, Frank A1 - Schenk, Jörg A. A1 - Kumke, Michael Uwe T1 - Antibody Binding at the Liposome-Water Interface BT - a FRET Investigation toward a Liposome-Based Assay JF - ACS Omega N2 - Different signal amplification strategies to improve the detection sensitivity of immunoassays have been applied which utilize enzymatic reactions, nanomaterials, or liposomes. The latter are very attractive materials for signal amplification because liposomes can be loaded with a large amount of signaling molecules, leading to a high sensitivity. In addition, liposomes can be used as a cell-like "bioscaffold" to directly test recognition schemes aiming at cell-related processes. This study demonstrates an easy and fast approach to link the novel hydrophobic optical probe based on [1,3]dioxolo[4,5-f]-[1,3]benzodioxole (DBD dye mm239) with tunable optical properties to hydrophilic recognition elements (e.g., antibodies) using liposomes for signal amplification and as carrier of the hydrophobic dye. The fluorescence properties of mm239 (e.g., long fluorescence lifetime, large Stokes shift, high photostability, and high quantum yield), its high hydrophobicity for efficient anchoring in liposomes, and a maleimide bioreactive group were applied in a unique combination to build a concept for the coupling of antibodies or other protein markers to liposomes (coupling to membranes can be envisaged). The concept further allowed us to avoid multiple dye labeling of the antibody. Here, anti-TAMRA-antibody (DC7-Ab) was attached to the liposomes. In proof-of-concept, steady-state as well as time-resolved fluorescence measurements (e.g., fluorescence depolarization) in combination with single molecule detection (fluorescence correlation spectroscopy, FCS) were used to analyze the binding interaction between DC7-Ab and liposomes as well as the binding of the antigen rhodamine 6G (R6G) to the antibody. Here, the Forster resonance energy transfer (FRET) between mm239 and R6G was monitored. In addition to ensemble FRET data, single-molecule FRET (PIE-FRET) experiments using pulsed interleaved excitation were used to characterize in detail the binding on a single-molecule level to avoid averaging out effects. KW - energy-transfer KW - immunoassay KW - complexes KW - probes Y1 - 2018 U6 - https://doi.org/10.1021/acsomega.8b03016 SN - 2470-1343 VL - 3 IS - 12 SP - 18109 EP - 18116 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Spiekermann, Georg A1 - Harder, M. A1 - Gilmore, Keith A1 - Zalden, Peter A1 - Sahle, Christoph J. A1 - Petitgirard, Sylvain A1 - Wilke, Max A1 - Biedermann, Nicole A1 - Weis, Thomas A1 - Morgenroth, Wolfgang A1 - Tse, John S. A1 - Kulik, E. A1 - Nishiyama, Norimasa A1 - Yavaş, Hasan A1 - Sternemann, Christian T1 - Persistent Octahedral Coordination in Amorphous GeO₂ Up to 100 GPa by Kβ'' X-Ray Emission Spectroscopy JF - Physical Review X N2 - We measure valence-to-core x-ray emission spectra of compressed crystalline GeO₂ up to 56 GPa and of amorphous GeO₂ up to 100 GPa. In a novel approach, we extract the Ge coordination number and mean Ge-O distances from the emission energy and the intensity of the Kβ'' emission line. The spectra of high-pressure polymorphs are calculated using the Bethe-Salpeter equation. Trends observed in the experimental and calculated spectra are found to match only when utilizing an octahedral model. The results reveal persistent octahedral Ge coordination with increasing distortion, similar to the compaction mechanism in the sequence of octahedrally coordinated crystalline GeO₂ high-pressure polymorphs. KW - rutile-type KW - glass KW - crystalline KW - pressures KW - complexes KW - silicon KW - oxygen KW - SIO₂ KW - MO KW - CU Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevX.9.011025 SN - 2469-9926 SN - 0556-2791 SN - 1050-2947 SN - 1094-1622 VL - 9 IS - 1 PB - American Physical Society by the American Institute of Physics CY - Melville, NY ER -