TY - JOUR A1 - Schmitz, Elisabeth I. A1 - Potteck, Henrik A1 - Schüppel, Melanie A1 - Manggau, Marianti A1 - Wahydin, Elly A1 - Kleuser, Burkhard T1 - Sphingosine 1-phosphate protects primary human keratinocytes from apoptosis via nitric oxide formation through the receptor subtype S1P(3) JF - Molecular and cellular biochemistry : an international journal for chemical biology in health and disease N2 - Although the lipid mediator sphingosine 1-phosphate (S1P) has been identified to induce cell growth arrest of human keratinocytes, the sphingolipid effectively protects these epidermal cells from apoptosis. The molecular mechanism of the anti-apoptotic action induced by S1P is less characterized. Apart from S1P, endogenously produced nitric oxide (NOaEuro cent) has been recognized as a potent modulator of apoptosis in keratinocytes. Therefore, it was of great interest to elucidate whether S1P protects human keratinocytes via a NOaEuro cent-dependent signalling pathway. Indeed, S1P induced an activation of endothelial nitric oxide synthase (eNOS) in human keratinocytes leading to an enhanced formation of NOaEuro cent. Most interestingly, the cell protective effect of S1P was almost completely abolished in the presence of the eNOS inhibitor L-NAME as well as in eNOS-deficient keratinocytes indicating that the sphingolipid metabolite S1P protects human keratinocytes from apoptosis via eNOS activation and subsequent production of protective amounts of NOaEuro cent. It is well established that most of the known actions of S1P are mediated by a family of five specific G protein-coupled receptors. Therefore, the involvement of S1P-receptor subtypes in S1P-mediated eNOS activation has been examined. Indeed, this study clearly shows that the S1P(3) is the exclusive receptor subtype in human keratinocytes which mediates eNOS activation and NOaEuro cent formation in response to S1P. In congruence, when the S1P(3) receptor subtype is abrogated, S1P almost completely lost its ability to protect human keratinocytes from apoptosis. KW - Keratinocytes KW - Sphingolipids KW - Sphingosine 1-phosphate KW - S1P-receptors KW - Nitric oxide KW - Endothelial nitric oxide synthase KW - Apoptosis Y1 - 2012 U6 - https://doi.org/10.1007/s11010-012-1433-5 SN - 0300-8177 VL - 371 IS - 1-2 SP - 165 EP - 176 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Imeri, Faik A1 - Fallegger, Daniel A1 - Zivkovic, Aleksandra A1 - Schwalm, Stephanie A1 - Enzmann, Gaby A1 - Blankenbach, Kira A1 - Heringdorf, Dagmar Meyer Zu A1 - Homann, Thomas A1 - Kleuser, Burkhard A1 - Pfeilschifter, Josef A1 - Engelhardt, Britta A1 - Stark, Holger A1 - Huwiler, Andrea T1 - Novel oxazolo-oxazole derivatives of FTY720 reduce endothelial cell permeability, immune cell chemotaxis and symptoms of experimental autoimmune encephalomyelitis in mice JF - Neuropharmacology N2 - The immunomodulatory FTY720 (fingolimod) is presently approved for the treatment of relapsing-remitting multiple sclerosis. It is a prodrug that acts by modulating sphingosine 1-phosphate (S1P) receptor signaling. In this study, we have developed and characterized two novel oxazolo-oxazole derivatives of FTY720, ST-968 and the oxy analog ST-1071, which require no preceding activating phosphorylation, and proved to be active in intact cells and triggered S1P(1) and S1P(3), but not S1P(2), receptor internalization as a result of receptor activation. Functionally, ST-968 and ST-1071 acted similar to FTY720 to abrogate S1P-triggered chemotaxis of mouse splenocytes, mouse T cells and human U937 cells, and reduced TNFa- and LPS-stimulated endothelial cell permeability. The compounds also reduced TNF alpha-induced ICAM-1 and VCAM-1 mRNA expression, but restored TNF alpha-mediated downregulation of PECAM-1 mRNA expression. In an in vivo setting, the application of ST-968 or ST-1071 to mice resulted in a reduction of blood lymphocytes and significantly reduced the clinical symptoms of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice comparable to FTY720 either by prophylactic or therapeutic treatment. In parallel to the reduced clinical symptoms, infiltration of immune cells in the brain was strongly reduced, and in isolated tissues of brain and spinal cord, the mRNA and protein expressions of ICAM-1 and VCAM-1, as well as of matrix metalloproteinase-9 were reduced by all compounds, whereas PECAM-1 and tissue inhibitor of metalloproteinase TIMP-1 were upregulated. In summary, the data suggest that these novel butterfly derivatives of FTY720 could have considerable implication for future therapies of multiple sclerosis and other autoimmune diseases. (C) 2014 Elsevier Ltd. All rights reserved. KW - Fingolimod KW - ST-968 KW - ST-1071 KW - Sphingosine 1-phosphate KW - Endothelial cells KW - Permeability KW - Multiple sclerosis Y1 - 2014 U6 - https://doi.org/10.1016/j.neuropharm.2014.05.012 SN - 0028-3908 SN - 1873-7064 VL - 85 SP - 314 EP - 327 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Fayyaz, Susann A1 - Henkel, Janin A1 - Japtok, Lukasz A1 - Krämer, Stephanie A1 - Damm, Georg A1 - Seehofer, Daniel A1 - Püschel, Gerhard Paul A1 - Kleuser, Burkhard T1 - Involvement of sphingosine 1-phosphate in palmitate-induced insulin resistance of hepatocytes via the S1P(2) receptor subtype JF - Diabetologia : journal of the European Association for the Study of Diabetes (EASD) N2 - Enhanced plasma levels of NEFA have been shown to induce hepatic insulin resistance, which contributes to the development of type 2 diabetes. Indeed, sphingolipids can be formed via a de novo pathway from the saturated fatty acid palmitate and the amino acid serine. Besides ceramides, sphingosine 1-phosphate (S1P) has been identified as a major bioactive lipid mediator. Therefore, our aim was to investigate the generation and function of S1P in hepatic insulin resistance. The incorporation of palmitate into sphingolipids was performed by rapid-resolution liquid chromatography-MS/MS in primary human and rat hepatocytes. The influence of S1P and the involvement of S1P receptors in hepatic insulin resistance was examined in human and rat hepatocytes, as well as in New Zealand obese (NZO) mice. Palmitate induced an impressive formation of extra- and intracellular S1P in rat and human hepatocytes. An elevation of hepatic S1P levels was observed in NZO mice fed a high-fat diet. Once generated, S1P was able, similarly to palmitate, to counteract insulin signalling. The inhibitory effect of S1P was abolished in the presence of the S1P(2) receptor antagonist JTE-013 both in vitro and in vivo. In agreement with this, the immunomodulator FTY720-phosphate, which binds to all S1P receptors except S1P(2), was not able to inhibit insulin signalling. These data indicate that palmitate is metabolised by hepatocytes to S1P, which acts via stimulation of the S1P(2) receptor to impair insulin signalling. In particular, S1P(2) inhibition could be considered as a novel therapeutic target for the treatment of insulin resistance. KW - FTY720 KW - Insulin signalling KW - Palmitate KW - S1P receptors KW - Sphingolipids KW - Sphingosine 1-phosphate Y1 - 2014 U6 - https://doi.org/10.1007/s00125-013-3123-6 SN - 0012-186X SN - 1432-0428 VL - 57 IS - 2 SP - 373 EP - 382 PB - Springer CY - New York ER - TY - JOUR A1 - Al Fadel, Frdoos A1 - Fayyaz, Susann A1 - Japtok, Lukasz A1 - Kleuser, Burkhard T1 - Involvement of Sphingosine 1-Phosphate in Palmitate-Induced Non-Alcoholic Fatty Liver Disease JF - Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology N2 - Background/Aims: Ectopic lipid accumulation in hepatocytes has been identified as a risk factor for the progression of liver fibrosis and is strongly associated with obesity. In particular, the saturated fatty acid palmitate is involved in initiation of liver fibrosis via formation of secondary metabolites by hepatocytes that in turn activate hepatic stellate cells (HSCs) in a paracrine manner Methods: a-smooth muscle actin-expression (alpha-SMA) as a marker of liver fibrosis was investigated via western blot analysis and immunofluorescence microscopy in HSCs (LX-2). Sphingolipid metabolism and the generation of the bioactive secondary metabolite sphingosine I-phosphate (SIP) in response to palmitate were analyzed by LC-MS/MS in hepatocytes (HepG2). To identify the molecular mechanism involved in the progression of liver fibrosis real-time PCR analysis and pharmacological modulation of SIP receptors were performed. Results: Palmitate oversupply increased intra- and extracellular SIP-concentrations in hepatocytes. Conditioned medium from HepG2 cells initiated fibrosis by enhancing alpha-SMA-expression in LX-2 in a S1P-dependent manner In accordance, fibrotic response in the presence of SIP was also observed in HSCs. Pharmacological inhibition of SIP receptors demonstrated that S1P(3) is the crucial receptor subtype involved in this process. Conclusion: SIP is synthesized in hepatocytes in response to palmitate and released into the extracellular environment leading to an activation of HSCs via the S1P(3) receptor (C) 2016 The Author(s) Published by S. Karger AG, Basel KW - Palmitate KW - Liver fibrosis KW - Sphingosine 1-phosphate KW - Hepatic stellate cells KW - Hepatocytes KW - alpha-SMA Y1 - 2016 U6 - https://doi.org/10.1159/000453213 SN - 1015-8987 SN - 1421-9778 VL - 40 SP - 1637 EP - 1645 PB - Karger CY - Basel ER - TY - JOUR A1 - Neuber, Corinna A1 - Schumacher, Fabian A1 - Gulbins, Erich A1 - Kleuser, Burkhard T1 - Mass Spectrometric Determination of Fatty Aldehydes Exemplified by Monitoring the Oxidative Degradation of (2E)-Hexadecenal in HepG2 Cell Lysates JF - Lipidomics N2 - Within the last few decades, liquid chromatography-mass spectrometry (LC-MS) has become a preferred method for manifold issues in analytical biosciences, given its high selectivity and sensitivity. However, the analysis of fatty aldehydes, which are important components of cell metabolism, remains challenging. Usually, chemical derivatization prior to MS detection is required to enhance ionization efficiency. In this regard, the coupling of fatty aldehydes to hydrazines like 2,4-dinitrophenylhydrazine (DNPH) is a common approach. Additionally, hydrazones readily react with fatty aldehydes to form stable derivatives, which can be easily separated using high-performance liquid chromatography (HPLC) and subsequently detected by MS. Here, we exemplarily present the quantification of the long-chain fatty aldehyde (2E)-hexadecenal, a break-down product of the bioactive lipid sphingosine 1-phosphate (S1P), after derivatization with 2-diphenylacetyl-1,3-indandione-1-hydrazone (DAIH) via isotope-dilution HPLC-electrospray ionization-quadrupole/time-of-flight (ESI-QTOF) MS. Moreover, we show that the addition of N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC hydrochloride) as a coupling agent allows for simultaneous determination of fatty aldehydes and fatty acids as DAIH derivatives. Taking advantage of this, we describe in detail how to monitor the degradation of (2E)-hexadecenal and the concurrent formation of its oxidation product (2E)-hexadecenoic acid in lysates of human hepatoblastoma (HepG2) cells within this chapter. KW - (2E)-hexadecenal KW - (2E)-hexadecenoic acid KW - Sphingosine 1-phosphate KW - Derivatization KW - DAIH KW - EDC KW - Isotope-dilution KW - HPLC-ESI-QTOF Y1 - 2017 SN - 978-1-4939-6946-3 SN - 978-1-4939-6944-9 U6 - https://doi.org/10.1007/978-1-4939-6946-3_10 SN - 0893-2336 SN - 1940-6045 VL - 125 SP - 147 EP - 158 PB - Humana Press CY - Totowa ER - TY - JOUR A1 - Cencetti, Francesca A1 - Bruno, Gennaro A1 - Bernacchioni, Caterina A1 - Japtok, Lukasz A1 - Puliti, Elisa A1 - Donati, Chiara A1 - Bruni, Paola T1 - Sphingosine 1-phosphate lyase blockade elicits myogenic differentiation of murine myoblasts acting via Spns2/S1P(2) receptor axis JF - Biochimica et biophysica acta : Molecular and cell biology of lipids N2 - The bioactive sphingolipid sphingosine 1-phosphate (S1P) has emerged in the last three decades as main regulator of key cellular processes including cell proliferation, survival, migration and differentiation. A crucial role for this sphingolipid has been recognized in skeletal muscle cell biology both in vitro and in vivo. S1P lyase (SPL) is responsible for the irreversible degradation of S1P and together with sphingosine kinases, the S1P producing enzymes, regulates cellular S1P levels. In this study is clearly showed that the blockade of SPL by pharmacological or RNA interference approaches induces myogenic differentiation of C2C12 myoblasts. Moreover, down-regulation of the specific S1P transporter spinster homolog 2 (Spns2) abrogates myogenic differentiation brought about by SPL inhibition or down-regulation, pointing at a role of extracellular S1P in the pro-myogenic action induced by SPL blockade. Furthermore, also S1P(2) receptor down-regulation was found to abrogate the pro-myogenic effect of SPL blockade. These results provide further proof that inside-out S1P signaling is critically implicated in skeletal muscle biology and provide support to the concept that the specific targeting of SPL could represent an exploitable strategy to treat skeletal muscle disorders. KW - Sphingosine 1-phosphate KW - Myogenic differentiation Y1 - 2020 U6 - https://doi.org/10.1016/j.bbalip.2020.158759 SN - 1388-1981 SN - 1879-2618 VL - 1865 IS - 9 PB - Elsevier CY - Amsterdam ER -