TY - JOUR A1 - Wright, Stephanie L. A1 - Ulke, Jannis A1 - Font, Anna A1 - Chan, Ka Lung Andrew A1 - Kelly, Frank J. T1 - Atmospheric microplastic deposition in an urban environment and an evaluation of transport JF - Environment international N2 - Microplastics are a global environmental issue contaminating aquatic and terrestrial environments. They have been reported in atmospheric deposition, and indoor and outdoor air, raising concern for public health due to the potential for exposure. Moreover, the atmosphere presents a new vehicle for microplastics to enter the wider environment, yet our knowledge of the quantities, characteristics and pathways of airborne microplastics is sparse. Here we show microplastics in atmospheric deposition in a major population centre, central London. Microplastics were found in all samples, with deposition rates ranging from 575 to 1008 microplastics/m(2)/d. They were found in various shapes, of which fibrous microplastics accounted for the great majority (92%). Across all samples, 15 different petrochemical-based polymers were identified. Bivariate polar plots indicated dependency on wind, with different source areas for fibrous and non-fibrous airborne microplastics. This is the first evidence of airborne microplastics in London and confirms the need to include airborne pathways when consolidating microplastic impacts on the wider environment and human health. KW - microplastics KW - atmospheric deposition KW - air pollution KW - urban Y1 - 2020 U6 - https://doi.org/10.1016/j.envint.2019.105411 SN - 0160-4120 SN - 1873-6750 VL - 136 PB - Elsevier, Pergamon Press CY - New York, NY [u.a.] ER - TY - JOUR A1 - Ramachandran, Srikanthan A1 - Rupakheti, Maheswar A1 - Cherian, R. A1 - Lawrence, Mark T1 - Climate Benefits of Cleaner Energy Transitions in East and South Asia Through Black Carbon Reduction JF - Frontiers in environmental science N2 - The state of air pollution has historically been tightly linked to how we produce and use energy. Air pollutant emissions over Asia are now changing rapidly due to cleaner energy transitions; however, magnitudes of benefits for climate and air quality remain poorly quantified. The associated risks involve adverse health impacts, reduced agricultural yields, reduced freshwater availability, contributions to climate change, and economic costs. We focus particularly on climate benefits of energy transitions by making first-time use of two decades of high quality observations of atmospheric loading of light-absorbing black carbon (BC) over Kanpur (South Asia) and Beijing (East Asia) and relating these observations to changing energy, emissions, and economic trends in India and China. Our analysis reveals that absorption aerosol optical depth (AAOD) due to BC has decreased substantially, by 40% over Kanpur and 60% over Beijing between 2001 and 2017, and thus became decoupled from regional economic growth. Furthermore, the resultant decrease in BC emissions and BC AAOD over Asia is regionally coherent and occurs primarily due to transitions into cleaner energies (both renewables and fossil fuels) and not due to the decrease in primary energy supply or decrease in use of fossil use and biofuels and waste. Model simulations show that BC aerosols alone contribute about half of the surface temperature change (warming) of the total forcing due to greenhouse gases, natural and internal variability, and aerosols, thus clearly revealing the climate benefits due to a reduction in BC emissions, which would significantly reduce global warming. However, this modeling study excludes responses from natural variability, circulation, and sea ice responses, which cause relatively strong temperature fluctuations that may mask signals from BC aerosols. Our findings show additional benefits for climate (beyond benefits of CO2 reduction) and for several other issues of sustainability over South and East Asia, provide motivation for ongoing cleaner energy production, and consumption transitions, especially when they are associated with reduced emissions of air pollutants. Such an analysis connecting the trends in energy transitions and aerosol absorption loading, unavailable so far, is crucial for simulating the aerosol climate impacts over Asia which is quite uncertain. KW - cleaner energy transitions KW - Asia KW - air pollution KW - black carbon KW - climate benefits Y1 - 2022 U6 - https://doi.org/10.3389/fenvs.2022.842319 SN - 2296-665X VL - 10 PB - Frontiers Media CY - Lausanne ER -