TY - JOUR A1 - Amselem, Gabriel A1 - Theves, Matthias A1 - Bae, Albert J. A1 - Bodenschatz, Eberhard A1 - Beta, Carsten T1 - A stochastic description of dictyostelium chemotaxis JF - PLoS one N2 - Chemotaxis, the directed motion of a cell toward a chemical source, plays a key role in many essential biological processes. Here, we derive a statistical model that quantitatively describes the chemotactic motion of eukaryotic cells in a chemical gradient. Our model is based on observations of the chemotactic motion of the social ameba Dictyostelium discoideum, a model organism for eukaryotic chemotaxis. A large number of cell trajectories in stationary, linear chemoattractant gradients is measured, using microfluidic tools in combination with automated cell tracking. We describe the directional motion as the interplay between deterministic and stochastic contributions based on a Langevin equation. The functional form of this equation is directly extracted from experimental data by angle-resolved conditional averages. It contains quadratic deterministic damping and multiplicative noise. In the presence of an external gradient, the deterministic part shows a clear angular dependence that takes the form of a force pointing in gradient direction. With increasing gradient steepness, this force passes through a maximum that coincides with maxima in both speed and directionality of the cells. The stochastic part, on the other hand, does not depend on the orientation of the directional cue and remains independent of the gradient magnitude. Numerical simulations of our probabilistic model yield quantitative agreement with the experimental distribution functions. Thus our model captures well the dynamics of chemotactic cells and can serve to quantify differences and similarities of different chemotactic eukaryotes. Finally, on the basis of our model, we can characterize the heterogeneity within a population of chemotactic cells. Y1 - 2012 U6 - https://doi.org/10.1371/journal.pone.0037213 SN - 1932-6203 VL - 7 IS - 5 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Amselem, Gabriel A1 - Theves, Matthias A1 - Bae, Albert J. A1 - Beta, Carsten A1 - Bodenschatz, Eberhard T1 - Control parameter description of eukaryotic chemotaxis JF - Physical review letters N2 - The chemotaxis of eukaryotic cells depends both on the average concentration of the chemoattractant and on the steepness of its gradient. For the social amoeba Dictyostelium discoideum, we test quantitatively the prediction by Ueda and Shibata [Biophys. J. 93, 11 (2007)] that the efficacy of chemotaxis depends on a single control parameter only, namely, the signal-to-noise ratio (SNR), determined by the stochastic fluctuations of (i) the binding of the chemoattractant molecule to the transmembrane receptor and (ii) the intracellular activation of the effector of the signaling cascade. For SNR less than or similar to 1, the theory captures the experimental findings well, while for larger SNR noise sources further downstream in the signaling pathway need to be taken into account. Y1 - 2012 U6 - https://doi.org/10.1103/PhysRevLett.109.108103 SN - 0031-9007 VL - 109 IS - 10 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Barbosa Pfannes, Eva Katharina A1 - Theves, Matthias A1 - Wegner, Christian A1 - Beta, Carsten T1 - Impact of the carbazole derivative wiskostatin on mechanical stability and dynamics of motile cells JF - JOURNAL OF MUSCLE RESEARCH AND CELL MOTILITY N2 - Many essential functions in eukaryotic cells like phagocytosis, division, and motility rely on the dynamical properties of the actin cytoskeleton. A central player in the actin system is the Arp2/3 complex. Its activity is controlled by members of the WASP (Wiskott-Aldrich syndrome protein) family. In this work, we investigated the effect of the carbazole derivative wiskostatin, a recently identified N-WASP inhibitor, on actin-driven processes in motile cells of the social ameba . Drug-treated cells exhibited an altered morphology and strongly reduced pseudopod formation. However, TIRF microscopy images revealed that the overall cortical network structure remained intact. We probed the mechanical stability of wiskostatin-treated cells using a microfluidic device. While the total amount of F-actin in the cells remained constant, their stiffness was strongly reduced. Furthermore, wiskostatin treatment enhanced the resistance to fluid shear stress, while spontaneous motility as well as chemotactic motion in gradients of cAMP were reduced. Our results suggest that wiskostatin affects the mechanical integrity of the actin cortex so that its rigidity is reduced and actin-driven force generation is impaired. KW - Actin dynamics KW - Wiskostatin KW - Dictyostelium discoideum Y1 - 2012 U6 - https://doi.org/10.1007/s10974-012-9287-8 SN - 0142-4319 VL - 33 IS - 2 SP - 95 EP - 106 PB - SPRINGER CY - DORDRECHT ER - TY - JOUR A1 - Theves, Matthias A1 - Taktikos, Johannes A1 - Zaburdaev, Vasily A1 - Stark, Holger A1 - Beta, Carsten T1 - A bacterial swimmer with two alternating speeds of propagation JF - Biophysical journal N2 - We recorded large data sets of swimming trajectories of the soil bacterium Pseudomonas putida. Like other prokaryotic swimmers, P. putida exhibits a motion pattern dominated by persistent runs that are interrupted by turning events. An in-depth analysis of their swimming trajectories revealed that the majority of the turning events is characterized by an angle of phi(1) = 180 degrees (reversals). To a lesser extent, turning angles of phi(2 Sigma Sigma Sigma Sigma) = 00 are also found. Remarkably, we observed that, upon a reversal, the swimming speed changes by a factor of two on average a prominent feature of the motion pattern that, to our knowledge, has not been reported before. A theoretical model, based on the experimental values for the average run time and the rotational diffusion, recovers the mean-square displacement of P. putida if the two distinct swimming speeds are taken into account. Compared to a swimmer that moves with a constant intermediate speed, the mean-square displacement is strongly enhanced. We furthermore observed a negative dip in the directional autocorrelation at intermediate times, a feature that is only recovered in an extended model, where the nonexponential shape of the run-time distribution is taken into account. Y1 - 2013 U6 - https://doi.org/10.1016/j.bpj.2013.08.047 SN - 0006-3495 SN - 1542-0086 VL - 105 IS - 8 SP - 1915 EP - 1924 PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Makarava, Natallia A1 - Menz, Stephan A1 - Theves, Matthias A1 - Huisinga, Wilhelm A1 - Beta, Carsten A1 - Holschneider, Matthias T1 - Quantifying the degree of persistence in random amoeboid motion based on the Hurst exponent of fractional Brownian motion JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - Amoebae explore their environment in a random way, unless external cues like, e. g., nutrients, bias their motion. Even in the absence of cues, however, experimental cell tracks show some degree of persistence. In this paper, we analyzed individual cell tracks in the framework of a linear mixed effects model, where each track is modeled by a fractional Brownian motion, i.e., a Gaussian process exhibiting a long-term correlation structure superposed on a linear trend. The degree of persistence was quantified by the Hurst exponent of fractional Brownian motion. Our analysis of experimental cell tracks of the amoeba Dictyostelium discoideum showed a persistent movement for the majority of tracks. Employing a sliding window approach, we estimated the variations of the Hurst exponent over time, which allowed us to identify points in time, where the correlation structure was distorted ("outliers"). Coarse graining of track data via down-sampling allowed us to identify the dependence of persistence on the spatial scale. While one would expect the (mode of the) Hurst exponent to be constant on different temporal scales due to the self-similarity property of fractional Brownian motion, we observed a trend towards stronger persistence for the down-sampled cell tracks indicating stronger persistence on larger time scales. Y1 - 2014 U6 - https://doi.org/10.1103/PhysRevE.90.042703 SN - 1539-3755 SN - 1550-2376 VL - 90 IS - 4 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Nagel, Oliver A1 - Guven, Can A1 - Theves, Matthias A1 - Driscoll, Meghan A1 - Losert, Wolfgang A1 - Beta, Carsten T1 - Geometry-driven polarity in motile amoeboid cells JF - PLoS one N2 - Motile eukaryotic cells, such as leukocytes, cancer cells, and amoeba, typically move inside the narrow interstitial spacings of tissue or soil. While most of our knowledge of actin-driven eukaryotic motility was obtained from cells that move on planar open surfaces, recent work has demonstrated that confinement can lead to strongly altered motile behavior. Here, we report experimental evidence that motile amoeboid cells undergo a spontaneous symmetry breaking in confined interstitial spaces. Inside narrow channels, the cells switch to a highly persistent, unidirectional mode of motion, moving at a constant speed along the channel. They remain in contact with the two opposing channel side walls and alternate protrusions of their leading edge near each wall. Their actin cytoskeleton exhibits a characteristic arrangement that is dominated by dense, stationary actin foci at the side walls, in conjunction with less dense dynamic regions at the leading edge. Our experimental findings can be explained based on an excitable network model that accounts for the confinement-induced symmetry breaking and correctly recovers the spatio-temporal pattern of protrusions at the leading edge. Since motile cells typically live in the narrow interstitial spacings of tissue or soil, we expect that the geometry-driven polarity we report here plays an important role for movement of cells in their natural environment. Y1 - 2014 U6 - https://doi.org/10.1371/journal.pone.0113382 SN - 1932-6203 VL - 9 IS - 12 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Raatz, Michael A1 - Hintsche, Marius A1 - Bahrs, Marco A1 - Theves, Matthias A1 - Beta, Carsten T1 - Swimming patterns of a polarly flagellated bacterium in environments of increasing complexity JF - European physical journal special topics N2 - The natural habitat of many bacterial swimmers is dominated by interfaces and narrow interstitial spacings where they frequently interact with the fluid boundaries in their vicinity. To quantify these interactions, we investigated the swimming behavior of the soil bacterium Pseudomonas putida in a variety of confined environments. Using microfluidic techniques, we fabricated structured microchannels with different configurations of cylindrical obstacles. In these environments, we analyzed the swimming trajectories for different obstacle densities and arrangements. Although the overall swimming pattern remained similar to movement in the bulk fluid, we observed a change in the turning angle distribution that could be attributed to collisions with the cylindrical obstacles. Furthermore, a comparison of the mean run length of the bacteria to the mean free path of a billiard particle in the same geometry indicated that, inside a densely packed environment, the trajectories of the bacterial swimmers are efficiently guided along the open spacings. Y1 - 2015 U6 - https://doi.org/10.1140/epjst/e2015-02454-3 SN - 1951-6355 SN - 1951-6401 VL - 224 IS - 7 SP - 1185 EP - 1198 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Theves, Matthias A1 - Taktikos, J. A1 - Zaburdaev, V. A1 - Stark, H. A1 - Beta, Carsten T1 - Random walk patterns of a soil bacterium in open and confined environments JF - epl : a letters journal exploring the frontiers of physics N2 - We used microfluidic tools and high-speed time-lapse microscopy to record trajectories of the soil bacterium Pseudomonas putida in a confined environment with cells swimming in close proximity to a glass-liquid interface. While the general swimming pattern is preserved, when compared to swimming in the bulk fluid, our results show that cells in the presence of two solid boundaries display more frequent reversals in swimming direction and swim faster. Additionally, we observe that run segments are no longer straight and that cells swim on circular trajectories, which can be attributed to the hydrodynamic wall effect. Using the experimentally observed parameters together with a recently presented analytic model for a run-reverse random walker, we obtained additional insight on how the spreading behavior of a cell population is affected under confinement. While on short time scales, the mean square displacement of confined swimmers grows faster as compared to the bulk fluid case, our model predicts that for large times the situation reverses due to the strong increase in effective rotational diffusion. Y1 - 2015 U6 - https://doi.org/10.1209/0295-5075/109/28007 SN - 0295-5075 SN - 1286-4854 VL - 109 IS - 2 PB - EDP Sciences CY - Mulhouse ER -