TY - JOUR A1 - Alter, S. Elizabeth A1 - Meyer, Matthias A1 - Post, Klaas A1 - Czechowski, Paul A1 - Gravlund, Peter A1 - Gaines, Cork A1 - Rosenbaum, Howard C. A1 - Kaschner, Kristin A1 - Turvey, Samuel T. A1 - van der Plicht, Johannes A1 - Shapiro, Beth A1 - Hofreiter, Michael T1 - Climate impacts on transocean dispersal and habitat in gray whales from the Pleistocene to 2100 JF - Molecular ecology N2 - Arctic animals face dramatic habitat alteration due to ongoing climate change. Understanding how such species have responded to past glacial cycles can help us forecast their response to today's changing climate. Gray whales are among those marine species likely to be strongly affected by Arctic climate change, but a thorough analysis of past climate impacts on this species has been complicated by lack of information about an extinct population in the Atlantic. While little is known about the history of Atlantic gray whales or their relationship to the extant Pacific population, the extirpation of the Atlantic population during historical times has been attributed to whaling. We used a combination of ancient and modern DNA, radiocarbon dating and predictive habitat modelling to better understand the distribution of gray whales during the Pleistocene and Holocene. Our results reveal that dispersal between the Pacific and Atlantic was climate dependent and occurred both during the Pleistocene prior to the last glacial period and the early Holocene immediately following the opening of the Bering Strait. Genetic diversity in the Atlantic declined over an extended interval that predates the period of intensive commercial whaling, indicating this decline may have been precipitated by Holocene climate or other ecological causes. These first genetic data for Atlantic gray whales, particularly when combined with predictive habitat models for the year 2100, suggest that two recent sightings of gray whales in the Atlantic may represent the beginning of the expansion of this species' habitat beyond its currently realized range. KW - ancient DNA KW - climate change KW - last glacial maximum KW - marine mammal Y1 - 2015 U6 - https://doi.org/10.1111/mec.13121 SN - 0962-1083 SN - 1365-294X VL - 24 IS - 7 SP - 1510 EP - 1522 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Ayzel, Georgy A1 - Izhitskiy, Alexander T1 - Climate Change Impact Assessment on Freshwater Inflow into the Small Aral Sea JF - Water N2 - During the last few decades, the rapid separation of the Small Aral Sea from the isolated basin has changed its hydrological and ecological conditions tremendously. In the present study, we developed and validated the hybrid model for the Syr Darya River basin based on a combination of state-of-the-art hydrological and machine learning models. Climate change impact on freshwater inflow into the Small Aral Sea for the projection period 2007-2099 has been quantified based on the developed hybrid model and bias corrected and downscaled meteorological projections simulated by four General Circulation Models (GCM) for each of three Representative Concentration Pathway scenarios (RCP). The developed hybrid model reliably simulates freshwater inflow for the historical period with a Nash-Sutcliffe efficiency of 0.72 and a Kling-Gupta efficiency of 0.77. Results of the climate change impact assessment showed that the freshwater inflow projections produced by different GCMs are misleading by providing contradictory results for the projection period. However, we identified that the relative runoff changes are expected to be more pronounced in the case of more aggressive RCP scenarios. The simulated projections of freshwater inflow provide a basis for further assessment of climate change impacts on hydrological and ecological conditions of the Small Aral Sea in the 21st Century. KW - Small Aral Sea KW - hydrology KW - climate change KW - modeling KW - machine learning Y1 - 2019 U6 - https://doi.org/10.3390/w11112377 SN - 2073-4441 VL - 11 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Böhnke, Denise A1 - Krehl, Alice A1 - Moermann, Kai A1 - Volk, Rebekka A1 - Lützkendorf, Thomas A1 - Naber, Elias A1 - Becker, Ronja A1 - Norra, Stefan T1 - Mapping urban green and its ecosystem services at microscale-a methodological approach for climate adaptation and biodiversity JF - Sustainability / Multidisciplinary Digital Publishing Institute (MDPI) N2 - The current awareness of the high importance of urban green leads to a stronger need for tools to comprehensively represent urban green and its benefits. A common scientific approach is the development of urban ecosystem services (UES) based on remote sensing methods at the city or district level. Urban planning, however, requires fine-grained data that match local management practices. Hence, this study linked local biotope and tree mapping methods to the concept of ecosystem services. The methodology was tested in an inner-city district in SW Germany, comparing publicly accessible areas and non-accessible courtyards. The results provide area-specific [m(2)] information on the green inventory at the microscale, whereas derived stock and UES indicators form the basis for comparative analyses regarding climate adaptation and biodiversity. In the case study, there are ten times more micro-scale green spaces in private courtyards than in the public space, as well as twice as many trees. The approach transfers a scientific concept into municipal planning practice, enables the quantitative assessment of urban green at the microscale and illustrates the importance for green stock data in private areas to enhance decision support in urban development. Different aspects concerning data collection and data availability are critically discussed. KW - climate adaptation KW - urban green KW - mapping KW - ecosystem service cascade KW - model KW - surface type-function-concept KW - planning indicators KW - city district KW - level KW - urban planning practice KW - climate change Y1 - 2022 U6 - https://doi.org/10.3390/su14159029 SN - 2071-1050 VL - 14 IS - 15 PB - MDPI CY - Basel ER - TY - JOUR A1 - Caron, Maria Mercedes A1 - De Frenne, Pieter A1 - Brunet, J. A1 - Chabrerie, Olivier A1 - Cousins, S. A. O. A1 - De Backer, L. A1 - Decocq, G. A1 - Diekmann, M. A1 - Heinken, Thilo A1 - Kolb, A. A1 - Naaf, T. A1 - Plue, J. A1 - Selvi, Federico A1 - Strimbeck, G. R. A1 - Wulf, Monika A1 - Verheyen, Kris T1 - Interacting effects of warming and drought on regeneration and early growth of Acer pseudoplatanus and A. platanoides JF - Plant biology N2 - Climate change is acting on several aspects of plant life cycles, including the sexual reproductive stage, which is considered amongst the most sensitive life-cycle phases. In temperate forests, it is expected that climate change will lead to a compositional change in community structure due to changes in the dominance of currently more abundant forest tree species. Increasing our understanding of the effects of climate change on currently secondary tree species recruitment is therefore important to better understand and forecast population and community dynamics in forests. Here, we analyse the interactive effects of rising temperatures and soil moisture reduction on germination, seedling survival and early growth of two important secondary European tree species, Acer pseudoplatanus and A.platanoides. Additionally, we analyse the effect of the temperature experienced by the mother tree during seed production by collecting seeds of both species along a 2200-km long latitudinal gradient. For most of the responses, A.platanoides showed higher sensitivity to the treatments applied, and especially to its joint manipulation, which for some variables resulted in additive effects while for others only partial compensation. In both species, germination and survival decreased with rising temperatures and/or soil moisture reduction while early growth decreased with declining soil moisture content. We conclude that although A.platanoides germination and survival were more affected after the applied treatments, its initial higher germination and larger seedlings might allow this species to be relatively more successful than A.pseudoplatanus in the face of climate change. KW - Acer platanoides KW - Acer pseudoplatanus KW - climate change KW - drought KW - reproduction KW - seed KW - temperature Y1 - 2015 U6 - https://doi.org/10.1111/plb.12177 SN - 1435-8603 SN - 1438-8677 VL - 17 IS - 1 SP - 52 EP - 62 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Chan, Sander A1 - Boran, Idil A1 - van Asselt, Harro A1 - Iacobuta, Gabriela A1 - Niles, Navam A1 - Rietig, Katharine A1 - Scobie, Michelle A1 - Bansard, Jennifer S. A1 - Delgado Pugley, Deborah A1 - Delina, Laurence L. A1 - Eichhorn, Friederike A1 - Ellinger, Paula A1 - Enechi, Okechukwu A1 - Hale, Thomas A1 - Hermwille, Lukas A1 - Hickmann, Thomas A1 - Honegger, Matthias A1 - Hurtado Epstein, Andrea A1 - Theuer, Stephanie La Hoz A1 - Mizo, Robert A1 - Sun, Yixian A1 - Toussaint, Patrick A1 - Wambugu, Geoffrey T1 - Promises and risks of nonstate action in climate and sustainability governance JF - Wiley interdisciplinary reviews : Climate change KW - climate change KW - governance KW - nonstate actions KW - SDGs KW - sustainable development Y1 - 2019 U6 - https://doi.org/10.1002/wcc.572 SN - 1757-7780 SN - 1757-7799 VL - 10 IS - 3 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Coch, Caroline A1 - Lamoureux, Scott F. A1 - Knoblauch, Christian A1 - Eischeid, Isabell A1 - Fritz, Michael A1 - Obu, Jaroslav A1 - Lantuit, Hugues T1 - Summer rainfall dissolved organic carbon, solute, and sediment fluxes in a small Arctic coastal catchment on Herschel Island (Yukon Territory, Canada) JF - Artic science N2 - Coastal ecosystems in the Arctic are affected by climate change. As summer rainfall frequency and intensity are projected to increase in the future, more organic matter, nutrients and sediment could bemobilized and transported into the coastal nearshore zones. However, knowledge of current processes and future changes is limited. We investigated streamflow dynamics and the impacts of summer rainfall on lateral fluxes in a small coastal catchment on Herschel Island in the western Canadian Arctic. For the summer monitoring periods of 2014-2016, mean dissolved organic matter flux over 17 days amounted to 82.7 +/- 30.7 kg km(-2) and mean total dissolved solids flux to 5252 +/- 1224 kg km(-2). Flux of suspended sediment was 7245 kg km(-2) in 2015, and 369 kg km(-2) in 2016. We found that 2.0% of suspended sediment was composed of particulate organic carbon. Data and hysteresis analysis suggest a limited supply of sediments; their interannual variability is most likely caused by short-lived localized disturbances. In contrast, our results imply that dissolved organic carbon is widely available throughout the catchment and exhibits positive linear relationship with runoff. We hypothesize that increased projected rainfall in the future will result in a similar increase of dissolved organic carbon fluxes. KW - permafrost KW - hydrology KW - lateral fluxes KW - hysteresis KW - climate change Y1 - 2018 U6 - https://doi.org/10.1139/as-2018-0010 SN - 2368-7460 VL - 4 IS - 4 SP - 750 EP - 780 PB - Canadian science publishing CY - Ottawa ER - TY - JOUR A1 - Colombo, Stefanie M. A1 - Wacker, Alexander A1 - Parrish, Christopher C. A1 - Kainz, Martin J. A1 - Arts, Michael T. T1 - A fundamental dichotomy in long-chain polyunsaturated fatty acid abundance between and within marine and terrestrial ecosystems JF - Environmental reviews = Dossiers environnement N2 - Polyunsaturated fatty acids (PUFA), especially long-chain (i.e., >= 20 carbons) polyunsaturated fatty acids (LC-PUFA), are fundamental to the health and survival of marine and terrestrial organisms. Therefore, it is imperative that we gain a better understanding of their origin, abundance, and transfer between and within these ecosystems. We evaluated the natural variation in PUFA distribution and abundance that exists between and within these ecosystems by amassing and analyzing, using multivariate and analysis of variance (ANOVA) methods, >3000 fatty acid (FA) profiles from marine and terrestrial organisms. There was a clear dichotomy in LC-PUFA abundance between organisms in marine and terrestrial ecosystems, mainly driven by the C-18 PUFA in terrestrial organisms and omega-3 (n-3) LC-PUFA in marine organisms. The PUFA content of an organism depended on both its biome (marine vs terrestrial) and taxonomic group. Within the marine biome, the PUFA content varied among taxonomic groups. PUFA content of marine organisms was dependent on both geographic zone (i.e., latitude, and thus broadly related to temperature) and trophic level (a function of diet). The contents of n-3 LC-PUFA were higher in polar and temperate marine organisms than those from the tropics. Therefore, we conclude that, on a per capita basis, high latitude marine organisms provide a disproportionately large global share of these essential nutrients to consumers, including terrestrial predators. Our analysis also hints at how climate change, and other anthropogenic stressors, might act to negatively impact the global distribution and abundance of n-3 LC-PUFA within marine ecosystems and on the terrestrial consumers that depend on these subsidies. KW - climate change KW - food webs KW - omega-3 KW - polyunsaturated fatty acids KW - trophic ecology Y1 - 2017 U6 - https://doi.org/10.1139/er-2016-0062 SN - 1208-6053 SN - 1181-8700 VL - 25 SP - 163 EP - 174 PB - NRC Research Press CY - Ottawa ER - TY - JOUR A1 - De Frenne, Pieter A1 - Brunet, Jorg A1 - Shevtsova, Anna A1 - Kolb, Annette A1 - Graae, Bente J. A1 - Chabrerie, Olivier A1 - Cousins, Sara Ao A1 - Decocq, Guillaume A1 - De Schrijver, An A1 - Diekmann, Martin A1 - Gruwez, Robert A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Nilsson, Christer A1 - Stanton, Sharon A1 - Tack, Wesley A1 - Willaert, Justin A1 - Verheyen, Kris T1 - Temperature effects on forest herbs assessed by warming and transplant experiments along a latitudinal gradient JF - Global change biology N2 - Slow-colonizing forest understorey plants are probably not able to rapidly adjust their distribution range following large-scale climate change. Therefore, the acclimation potential to climate change within their actual occupied habitats will likely be key for their short-and long-term persistence. We combined transplant experiments along a latitudinal gradient with open-top chambers to assess the effects of temperature on phenology, growth and reproductive performance of multiple populations of slow-colonizing understorey plants, using the spring flowering geophytic forb Anemone nemorosa and the early summer flowering grass Milium effusum as study species. In both species, emergence time and start of flowering clearly advanced with increasing temperatures. Vegetative growth (plant height, aboveground biomass) and reproductive success (seed mass, seed germination and germinable seed output) of A. nemorosa benefited from higher temperatures. Climate warming may thus increase future competitive ability and colonization rates of this species. Apart from the effects on phenology, growth and reproductive performance of M. effusum generally decreased when transplanted southwards (e. g., plant size and number of individuals decreased towards the south) and was probably more limited by light availability in the south. Specific leaf area of both species increased when transplanted southwards, but decreased with open-top chamber installation in A. nemorosa. In general, individuals of both species transplanted at the home site performed best, suggesting local adaptation. We conclude that contrasting understorey plants may display divergent plasticity in response to changing temperatures which may alter future understorey community dynamics. KW - climate change KW - common garden experiment KW - forest understorey KW - latitude KW - local adaptation KW - open-top chambers KW - phenotypic plasticity KW - pot experiment Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-2486.2011.02449.x SN - 1354-1013 VL - 17 IS - 10 SP - 3240 EP - 3253 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - De Frenne, Pieter A1 - Graae, Bente J. A1 - Brunet, Jörg A1 - Shevtsova, Anna A1 - De Schrijver, An A1 - Chabrerie, Olivier A1 - Cousins, Sara A. O. A1 - Decocq, Guillaume A1 - Diekmann, Martin A1 - Hermy, Martin A1 - Heinken, Thilo A1 - Kolb, Annette A1 - Nilsson, Christer A1 - Stanton, Sharon A1 - Verheyen, Kris T1 - The response of forest plant regeneration to temperature variation along a latitudinal gradient JF - Annals of botany N2 - The response of forest herb regeneration from seed to temperature variations across latitudes was experimentally assessed in order to forecast the likely response of understorey community dynamics to climate warming. Seeds of two characteristic forest plants (Anemone nemorosa and Milium effusum) were collected in natural populations along a latitudinal gradient from northern France to northern Sweden and exposed to three temperature regimes in growth chambers (first experiment). To test the importance of local adaptation, reciprocal transplants were also made of adult individuals that originated from the same populations in three common gardens located in southern, central and northern sites along the same gradient, and the resulting seeds were germinated (second experiment). Seedling establishment was quantified by measuring the timing and percentage of seedling emergence, and seedling biomass in both experiments. Spring warming increased emergence rates and seedling growth in the early-flowering forb A. nemorosa. Seedlings of the summer-flowering grass M. effusum originating from northern populations responded more strongly in terms of biomass growth to temperature than southern populations. The above-ground biomass of the seedlings of both species decreased with increasing latitude of origin, irrespective of whether seeds were collected from natural populations or from the common gardens. The emergence percentage decreased with increasing home-away distance in seeds from the transplant experiment, suggesting that the maternal plants were locally adapted. Decreasing seedling emergence and growth were found from the centre to the northern edge of the distribution range for both species. Stronger responses to temperature variation in seedling growth of the grass M. effusum in the north may offer a way to cope with environmental change. The results further suggest that climate warming might differentially affect seedling establishment of understorey plants across their distribution range and thus alter future understorey plant dynamics. KW - Anemone nemorosa KW - climate change KW - common garden KW - growth chambers KW - latitudinal gradient KW - local adaptation KW - Milium effusum KW - plant regeneration KW - range edges KW - recruitment KW - seedling establishment KW - temperature Y1 - 2012 U6 - https://doi.org/10.1093/aob/mcs015 SN - 0305-7364 VL - 109 IS - 5 SP - 1037 EP - 1046 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - De Frenne, Pieter A1 - Rodriguez-Sanchez, Francisco A1 - Coomes, David Anthony A1 - Bäten, Lander A1 - Versträten, Gorik A1 - Vellend, Mark A1 - Bernhardt-Römermann, Markus A1 - Brown, Carissa D. A1 - Brunet, Jörg A1 - Cornelis, Johnny A1 - Decocq, Guillaume M. A1 - Dierschke, Hartmut A1 - Eriksson, Ove A1 - Gilliam, Frank S. A1 - Hedl, Radim A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Hommel, Patrick A1 - Jenkins, Michael A. A1 - Kelly, Daniel L. A1 - Kirby, Keith J. A1 - Mitchell, Fraser J. G. A1 - Naaf, Tobias A1 - Newman, Miles A1 - Peterken, George A1 - Petrik, Petr A1 - Schultz, Jan A1 - Sonnier, Gregory A1 - Van Calster, Hans A1 - Waller, Donald M. A1 - Walther, Gian-Reto A1 - White, Peter S. A1 - Woods, Kerry D. A1 - Wulf, Monika A1 - Graae, Bente Jessen A1 - Verheyen, Kris T1 - Microclimate moderates plant responses to macroclimate warming JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Recent global warming is acting across marine, freshwater, and terrestrial ecosystems to favor species adapted to warmer conditions and/or reduce the abundance of cold-adapted organisms (i.e., "thermophilization" of communities). Lack of community responses to increased temperature, however, has also been reported for several taxa and regions, suggesting that "climatic lags" may be frequent. Here we show that microclimatic effects brought about by forest canopy closure can buffer biotic responses to macroclimate warming, thus explaining an apparent climatic lag. Using data from 1,409 vegetation plots in European and North American temperate forests, each surveyed at least twice over an interval of 12-67 y, we document significant thermophilization of ground-layer plant communities. These changes reflect concurrent declines in species adapted to cooler conditions and increases in species adapted to warmer conditions. However, thermophilization, particularly the increase of warm-adapted species, is attenuated in forests whose canopies have become denser, probably reflecting cooler growing-season ground temperatures via increased shading. As standing stocks of trees have increased in many temperate forests in recent decades, local microclimatic effects may commonly be moderating the impacts of macroclimate warming on forest understories. Conversely, increases in harvesting woody biomass-e.g., for bioenergy-may open forest canopies and accelerate thermophilization of temperate forest biodiversity. KW - climate change KW - forest management KW - understory KW - climatic debt KW - range shifts Y1 - 2013 U6 - https://doi.org/10.1073/pnas.1311190110 SN - 0027-8424 VL - 110 IS - 46 SP - 18561 EP - 18565 PB - National Acad. of Sciences CY - Washington ER -