TY - JOUR A1 - Maes, Sybryn L. A1 - Blondeel, Haben A1 - Perring, Michael P. A1 - Depauw, Leen A1 - Brumelis, Guntis A1 - Brunet, Jörg A1 - Decocq, Guillaume A1 - den Ouden, Jan A1 - Haerdtle, Werner A1 - Hedl, Radim A1 - Heinken, Thilo A1 - Heinrichs, Steffi A1 - Jaroszewicz, Bogdan A1 - Kirby, Keith J. A1 - Kopecky, Martin A1 - Malis, Frantisek A1 - Wulf, Monika A1 - Verheyen, Kris T1 - Litter quality, land-use history, and nitrogen deposition effects on topsoil conditions across European temperate deciduous forests JF - Forest ecology and management N2 - Topsoil conditions in temperate forests are influenced by several soil-forming factors, such as canopy composition (e.g. through litter quality), land-use history, atmospheric deposition, and the parent material. Many studies have evaluated the effects of single factors on physicochemical topsoil conditions, but few have assessed the simultaneous effects of multiple drivers. Here, we evaluate the combined effects of litter quality, land-use history (past land cover as well as past forest management), and atmospheric deposition on several physicochemical topsoil conditions of European temperate deciduous forest soils: bulk density, proportion of exchangeable base cations, carbon/nitrogen-ratio (C/N), litter mass, bio-available and total phosphorus, pH(KCI)and soil organic matter. We collected mineral soil and litter layer samples, and measured site characteristics for 190 20 x 20 m European mixed forest plots across gradients of litter quality (derived from the canopy species composition) and atmospheric deposition, and for different categories of past land cover and past forest management. We accounted for the effects of parent material on topsoil conditions by clustering our plots into three soil type groups based on texture and carbonate concentration. We found that litter quality was a stronger driver of topsoil conditions compared to land-use history or atmospheric deposition, while the soil type also affected several topsoil conditions here. Plots with higher litter quality had soils with a higher proportion of exchangeable base cations, and total phosphorus, and lower C/N-ratios and litter mass. Furthermore, the observed litter quality effects on the topsoil were independent from the regional nitrogen deposition or the soil type, although the soil type likely (co)-determined canopy composition and thus litter quality to some extent in the investigated plots. Litter quality effects on topsoil phosphorus concentrations did interact with past land cover, highlighting the need to consider land-use history when evaluating canopy effects on soil conditions. We conclude that forest managers can use the canopy composition as an important tool for influencing topsoil conditions, although soil type remains an important factor to consider. KW - Soil fertility KW - Ancient forest KW - Post-agricultural forest KW - Coppice KW - High forest KW - pH KW - Phosphorus KW - Base cations KW - Nutrient cycling KW - Decomposition Y1 - 2019 U6 - https://doi.org/10.1016/j.foreco.2018.10.056 SN - 0378-1127 SN - 1872-7042 VL - 433 SP - 405 EP - 418 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike A1 - Gorodnichev, Ruslan A1 - Wetterich, Sebastian T1 - The sensitivity of diatom taxa from Yakutian lakes (north-eastern Siberia) to electrical conductivity and other environmental variables JF - Polar research : a Norwegian journal of Polar research N2 - Relative abundances of 157 diatom taxa from Yakutian lake surface-sediments were investigated for their potential to indicate certain environmental conditions. Data from 206 sites from Arctic, sub-Arctic and boreal environments were included. Redundancy analyses were performed to assess the explanatory power of mean July temperature (T-July), conductivity, pH, dissolved silica concentration, phosphate concentration, lake depth and vegetation type on diatom species composition. Boosted regression tree analyses were performed to infer the most relevant environmental variables for abundances of individual taxa and weighted average regression was applied to infer their respective optimum and tolerance. Electrical conductivity was best indicated by diatom taxa. In contrast, only few taxa were indicative of Si and water depth. Few taxa were related to specific pH values. Although T-July, explained the highest proportion of variance in the diatom spectra and was, after conductivity, the second-most selected splitting variable, we a priori decided not to present indicator taxa because of the poorly understood relationship between diatom occurrences and T-July. In total, 92 diatom taxa were reliable indicators of a certain vegetation type or a combination of several types. The high numbers of indicative species for open vegetation sites and for forested sites suggest that the principal turnover is the transition from forest-tundra to northern taiga. Overall, our results reveal that preference ranges of diatom taxa for environmental variables are mostly broad, and the use of indicator taxa for the purposes of environmental reconstruction or environmental monitoring is therefore restricted to marked rather than subtle environmental transitions. KW - Temperature KW - pH KW - dissolved silica concentration KW - Arctic KW - diatom indicator species Y1 - 2018 U6 - https://doi.org/10.1080/17518369.2018.1485625 SN - 0800-0395 SN - 1751-8369 VL - 37 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Reza, M. Toufiq A1 - Rottler, Erwin A1 - Herklotz, Laureen A1 - Wirth, Benjamin T1 - Hydrothermal carbonization (HTC) of wheat straw: Influence of feedwater pH prepared by acetic acid and potassium hydroxide JF - Bioresource technology : biomass, bioenergy, biowastes, conversion technologies, biotransformation, production technologies N2 - In this study, influence of feedwater pH (2-12) was studied for hydrothermal carbonization (HTC) of wheat straw at 200 and 260 degrees C. Acetic acid and KOH were used as acidic and basic medium, respectively. Hydrochars were characterized by elemental and fiber analyses, SEM, surface area, pore volume and size, and ATR-FTIR, while HTC process liquids were analyzed by HPLC and GC. Both hydrochar and HTC process liquid qualities vary with feedwater pH. At acidic pH, cellulose and elemental carbon increase in hydrochar, while hemicellulose and pseudo-lignin decrease. Hydrochars produced at pH 2 feedwater has 2.7 times larger surface area than that produced at pH 12. It also has the largest pore volume (1.1 x 10(-1) ml g(-1)) and pore size (20.2 nm). Organic acids were increasing, while sugars were decreasing in case of basic feedwater, however, phenolic compounds were present only at 260 degrees C and their concentrations were increasing in basic feedwater. (C) 2015 Elsevier Ltd. All rights reserved. KW - Hydrothermal carbonization KW - HTC biochar KW - pH KW - Fiber analysis KW - Pore analysis Y1 - 2015 U6 - https://doi.org/10.1016/j.biortech.2015.02.024 SN - 0960-8524 SN - 1873-2976 VL - 182 SP - 336 EP - 344 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Rudolph-Mohr, Nicole A1 - Gottfried, Sebastian A1 - Lamshöft, Marc A1 - Zühlke, Sebastian A1 - Oswald, Sascha A1 - Spiteller, Michael T1 - Non-invasive imaging techniques to study O-2 micro-patterns around pesticide treated lupine roots JF - Geoderma : an international journal of soil science N2 - The soil root interface is a highly heterogeneous system, e.g. in terms of O-2 and pH distribution. The destructive character of conventional methods disturbs the natural conditions of those biogeochemical gradients. Therefore, experiments aiming to control these influences and study pesticide kinetics under given O-2 and pH conditions suffer from a large uncertainty of the "real" O-2/pH at a certain position. Our approach with two different imaging techniques will examine the soil-root interface as well as the dissipation of the applied pesticide at a high spatial resolution. The obtained outcomes show directly that the pH has an influence on enantioselective dissipation of the acetanilide fungicide metalaxyl. In areas with high pH from an applied racemic mixture, the R-enantiomer dissipates faster than the S-enantiomer. Moreover, we found significantly reduced oxygen values in the bulk soil and vicinity of metalaxyl treated roots compared to control plant roots. The combination of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) and fluorescence imaging indicated the oxygen-dependent behavior of metalaxyl at the root surface. The results presented here underline the great potential of combining different imaging methods to examine the soil-root interfaces as well as the dissipation of organic pollutants in small soil compartments. (C) 2014 Elsevier B.V. All rights reserved. KW - MALDI imaging KW - Fluorescence imaging KW - pH KW - O-2 KW - Rhizosphere KW - Rac-metalaxyl Y1 - 2015 U6 - https://doi.org/10.1016/j.geoderma.2014.10.022 SN - 0016-7061 SN - 1872-6259 VL - 239 SP - 257 EP - 264 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Weisse, Thomas A1 - Laufenstein, Nicole A1 - Weithoff, Guntram T1 - Multiple environmental stressors confine the ecological niche of the rotifer Cephalodella acidophila JF - Freshwater biology N2 - 1The planktonic food web in extremely acidic mining lakes is restricted to a few species that are either acidophilic or acidotolerant. Common metazoans inhabiting acidic mining lakes with a pH below 3 include rotifers in the genera Cephalodella and Elosa. 2The life history response of Cephalodella acidophila to three environmental key factors, pH (2, 3.5, 5.0 and 7.0), temperature (10, 17.5 and 25 degrees C) and food concentration (10000, 35000 and 50000algal cells per mL), was investigated in a full factorial design using life-table experiments. 3The effect of each of the three environmental variables investigated on the rotifer life cycle parameters (life span, fecundity and population growth rate) differed. C.acidophila is a stenoecious species with a pH optimum in the range 34 and a comparably high food threshold. Combining the laboratory results with field data, we conclude that C.acidophila is severely growth limited in its natural habitat. However, low pH alone is not harmful as long as temperatures are moderate to warm and food is abundant. 4The population of C.acidophila in the field is maintained mainly due to release from competitors and predators. KW - acid lakes KW - Cephalodella acidophila KW - life-table experiments KW - pH KW - rotifers Y1 - 2013 U6 - https://doi.org/10.1111/fwb.12104 SN - 0046-5070 VL - 58 IS - 5 SP - 1008 EP - 1015 PB - Wiley-Blackwell CY - Hoboken ER -