TY - JOUR A1 - Albrecht, Tanja A1 - Haebel, Sophie A1 - Koch, Anke A1 - Krause, Ulrike A1 - Eckermann, Nora A1 - Steup, Martin T1 - Yeast glycogenin (Glg2p) produced in Escherichia coli is simultaneously glucosylated at two vicinal tyrosin residues but results in a reduced bacterial glycogen accumulation N2 - Saccharomyces cerevisiae possesses two glycogenin isoforms (designated as Glg1p and Glg2p) that both contain a conserved tyrosine residue, Tyr232. However, Glg2p possesses an additional tyrosine residue, Tyr230 and therefore two potential autoglucosylation sites. Glucosylation of Glg2p was studied using both matrix-assisted laser desorption ionization and electrospray quadrupole time of flight mass spectrometry. Glg2p, carrying a C-terminal (His(6)) tag, was produced in Escherichia coli and purified. By tryptic digestion and reversed phase chromatography a peptide (residues 219-246 of the complete Glg2p sequence) was isolated that contained 4-25 glucosyl residues. Following incubation of Glg2p with UDPglucose, more than 36 glucosyl residues were covalently bound to this peptide. Using a combination of cyanogen bromide cleavage of the protein backbone, enzymatic hydrolysis of glycosidic bonds and reversed phase chromatography, mono- and diglucosylated peptides having the sequence PNYGYQSSPAM were generated. MS/MS spectra revealed that glucosyl residues were attached to both Tyr232 and Tyr230 within the same peptide. The formation of the highly glucosylated eukaryotic Glg2p did not favour the bacterial glycogen accumulation. Under various experimental conditions Glg2p-producing cells accumulated approximately 30% less glycogen than a control transformed with a Glg2p lacking plasmid. The size distribution of the glycogen and extractable activities of several glycogen-related enzymes were essentially unchanged. As revealed by high performance anion exchange chromatography, the intracellular maltooligosaccharide pattern of the bacterial cells expressing the functional eukaryotic transgene was significantly altered. Thus, the eukaryotic glycogenin appears to be incompatible with the bacterial initiation of glycogen biosynthesis Y1 - 2004 ER - TY - JOUR A1 - Baumann, Guido A1 - Eckermann, Nora A1 - Meinel, Thomas T1 - Zur Kohlenstoffassimilation in grünen Zuckerrüben-Kalluskulturen Y1 - 1994 ER - TY - JOUR A1 - Baumann, Ingrid A1 - Eckermann, Nora T1 - Ploidy level and chlorophyll content of single plastids and cells from callus cultures during conversion to autotrophic growth Y1 - 1994 ER - TY - JOUR A1 - Baumann, Ingrid A1 - Eckermann, Nora A1 - Krause, Udo A1 - Baumann, Guido T1 - Effects of sucrose in the culture medium on cytological characteristics, pigments and photosynthetic activity of green callus cultures of sugar beet Y1 - 1994 ER - TY - JOUR A1 - Dauvillee, David A1 - Chochois, Vincent A1 - Steup, Martin A1 - Haebel, Sophie A1 - Eckermann, Nora A1 - Ritte, Gerhard A1 - Ral, Jean-Philippe A1 - Colleoni, Christophe A1 - Hicks, Glenn A1 - Wattebled, Fabrice A1 - Deschamps, Philippe A1 - Lienard, Luc A1 - Cournac, Laurent A1 - Putaux, Jean-Luc A1 - Dupeyre, Danielle A1 - Ball, Steven G. T1 - Plastidial phosphorylase is required for normal starch synthesis in Chlamydomonas reinhardtii JF - The plant journal N2 - Among the three distinct starch phosphorylase activities detected in Chlamydomonas reinhardtii, two distinct plastidial enzymes (PhoA and PhoB) are documented while a single extraplastidial form (PhoC) displays a higher affinity for glycogen as in vascular plants. The two plastidial phosphorylases are shown to function as homodimers containing two 91-kDa (PhoA) subunits and two 110-kDa (PhoB) subunits. Both lack the typical 80-amino-acid insertion found in the higher plant plastidial forms. PhoB is exquisitely sensitive to inhibition by ADP-glucose and has a low affinity for malto-oligosaccharides. PhoA is more similar to the higher plant plastidial phosphorylases: it is moderately sensitive to ADP-glucose inhibition and has a high affinity for unbranched malto-oligosaccharides. Molecular analysis establishes that STA4 encodes PhoB. Chlamydomonas reinhardtii strains carrying mutations at the STA4 locus display a significant decrease in amounts of starch during storage that correlates with the accumulation of abnormally shaped granules containing a modified amylopectin structure and a high amylose content. The wild-type phenotype could be rescued by reintroduction of the cloned wild-type genomic DNA, thereby demonstrating the involvement of phosphorylase in storage starch synthesis. KW - Chlamydomonas KW - starch KW - amylopectin KW - (glycogen) starch phosphorylase Y1 - 2006 U6 - https://doi.org/10.1111/j.1365-313X.2006.02870.x SN - 0960-7412 VL - 48 IS - 2 SP - 274 EP - 285 PB - Blackwell CY - Oxford ER - TY - THES A1 - Eckermann, Nora T1 - Biochemische Charakterisierung von Gewebekulturstämmen unterschiedlicher Photosynthese- und Morphogenesekapazität aus Beta vulgaris L Y1 - 1995 ER - TY - JOUR A1 - Eckermann, Nora A1 - Baumann, Guido T1 - Enzymatic changes in callus cultures of sugar beet during the transition from photoheterotrophic to photoautotrophic growth Y1 - 1995 ER - TY - JOUR A1 - Eckermann, Nora A1 - Fettke, Jörg A1 - Pauly, Markus A1 - Bazant, Esther A1 - Steup, Martin T1 - Starch-metabolism related isozymes in higher plants Y1 - 2004 ER - TY - JOUR A1 - Eckermann, Nora A1 - Fettke, Jörg A1 - Steup, Martin T1 - Identification of polysaccharide binding proteins by affinity electrophoresis in inhomogeneous polyacrylamide gels and subsequent SDS-PAGE/MALDI-TOF analysis Y1 - 2002 ER - TY - JOUR A1 - Fettke, Jörg A1 - Chia, Tansy A1 - Eckermann, Nora A1 - Smith, Alison M. A1 - Steup, Martin T1 - A transglucosidase necessary for starch degradation and maltose metabolism in leaves at night acts on cytosolic heteroglycans (SHG) N2 - The recently characterized cytosolic transglucosidase DPE2 (EC 2.4.1.25) is essential for the cytosolic metabolism of maltose, an intermediate on the pathway by which starch is converted to sucrose at night. In in vitro assays, the enzyme utilizes glycogen as a glucosyl acceptor but the in vivo acceptor molecules remained unknown. In this communication we present evidence that DPE2 acts on the recently identified cytosolic water-soluble heteroglycans (SHG) as does the cytosolic phosphorylase (EC 2.4.1.1) isoform. By using in vitro two-step C-14 labeling assays we demonstrate that the two transferases can utilize the same acceptor sites of the SHG. Cytosolic heteroglycans from a DPE2-deficient Arabidopsis mutant were characterized. Compared with the wild type the glucose content of the heteroglycans was increased. Most of the additional glucosyl residues were found in the outer chains of SHG that are released by an endo- alpha-arabinanase (EC 3.2.1.99). Additional starch-related mutants were characterized for further analysis of the increased glucosyl content. Based on these data, the cytosolic metabolism of starch-derived carbohydrates is discussed Y1 - 2006 UR - http://www3.interscience.wiley.com/cgi-bin/issn?DESCRIPTOR=PRINTISSN&VALUE=0960-7412 U6 - https://doi.org/10.1111/j.1365-313X.2006.02732.x SN - 0960-7412 ER -