TY - JOUR A1 - Gärtner, Mirijam A1 - Nottebrock, Henning A1 - Fourie, Helanya A1 - Privett, Sean D. J. A1 - Richardson, David M. T1 - Plant invasions, restoration, and economics perspectives from South African fynbos JF - Perspectives in plant ecology, evolution and systematics N2 - Restoration is gaining importance in the management of plant invasions. As the success of restoration projects is frequently determined by factors other than ecological ones, we explored the ecological and financial feasibility of active restoration on three different invaded sites in South Africa's Cape Floristic Region. The aim of our study was to identify cost-effective ways of restoring functional native ecosystems following invasion by alien plants. Over three years we evaluated different restoration approaches using field trials and experimental manipulations (i.e. mechanical clearing, burning, different soil restoration techniques and sowing of native species) to reduce elevated soil nutrient levels and to re-establish native fynbos communities. Furthermore we investigated the possibility of introducing native fynbos species that can be used for sustainable harvesting to create an incentive for restoration on private land. Diversity and evenness of native plant species increased significantly after restoration at all three sites, whereas cover of alien plants decreased significantly, confirming that active restoration was successful. However, sowing of native fynbos species had no significant effect on native cover, species richness, diversity or evenness in the Acacia thicket and Kikuyu field, implying that the ecosystem was sufficiently resilient to allow autogenic recovery following clearing and burning of the invasive species. Soil restoration treatments resulted in an increase of available nitrogen in the Acacia thicket, but had no significant effects in the Eucalyptus plantation. However, despite elevated available soil nitrogen levels, native species germinated irrespective whether sown or unsown (i.e. regeneration from the soil seed bank). Without active introduction of native species, native grasses, forbs and other shrubs would have dominated, and proteoids and ericoids (the major fynbos growth forms) would have been under-represented. The financial analysis shows that income from flower harvesting following active restoration consistently outweighs income following passive restoration, but that the associated increase in income does not always justify the higher costs. We conclude that active restoration can be effective and financially feasible when compared to passive restoration, depending on the density of invasion. Active restoration of densely invaded sites may therefore only be justifiable if the target area is in a region of high conservation priority. KW - Biological invasions KW - Cost-benefit analysis KW - Degradation KW - Exotic species KW - Flower harvesting KW - Rehabilitation Y1 - 2012 U6 - https://doi.org/10.1016/j.ppees.2012.05.001 SN - 1433-8319 VL - 14 IS - 5 SP - 341 EP - 353 PB - Elsevier CY - Jena ER - TY - JOUR A1 - Khuroo, Anzar A. A1 - Reshi, Zafar A. A1 - Malik, Akhtar H. A1 - Weber, Ewald A1 - Rashid, Irfan A1 - Dar, G. H. T1 - Alien flora of India taxonomic composition, invasion status and biogeographic affiliations JF - Biological invasions : unique international journal uniting scientists in the broad field of biological invasions N2 - The wide knowledge gaps in invasion biology research that exist in the developing world are crucial impediments to the scientific management and global policymaking on biological invasions. In an effort to fill such knowledge gaps, we present here an inventory of the alien flora of India, based on systematic reviews and rigorous analyses of research studies (ca. 190) published over the last 120 years (1890-2010 AD), and updated with field records of the last two decades. Currently, the inventory comprises of 1,599 species, belonging to 842 genera in 161 families, and constitutes 8.5% of the total Indian vascular flora. The three most species-rich families are Asteraceae (134 spp.), Papilionaceae (114 spp.) and Poaceae (106 spp.), and the three largest genera are Eucalyptus (25 spp.), Ipomoea (22 spp.), and Senna (21 spp.). The majority of these species (812) have no report of escaping from cultivation. Of the remaining subset of 787 species, which have either escaped from intentional cultivation, or spread after unintentional introduction, casuals are represented by 57 spp., casual/naturalised by 114 spp., naturalised by 257 spp., naturalised/invasive by 134 spp., and invasive by 225 spp. Biogeographically, more than one-third (35%) of the alien flora in India has its native ranges in South America, followed by Asia (21%), Africa (20%), Europe (11%), Australia (8%), North America (4%); and cryptogenic (1%). The inventory is expected to serve as the scientific baseline on plant invasions in India, with implications for conservation of global biodiversity. KW - Biodiversity KW - Biological invasions KW - Alien plants KW - Taxonomy KW - Biogeography KW - India Y1 - 2012 U6 - https://doi.org/10.1007/s10530-011-9981-2 SN - 1387-3547 VL - 14 IS - 1 SP - 99 EP - 113 PB - Springer CY - Dordrecht ER -