TY - JOUR A1 - Barth, Johannes A1 - Siegmann, Rebekka A1 - Beuermann, Sabine A1 - Russell, Gregory T. A1 - Buback, Michael T1 - Investigations into chain-length-dependent termination in bulk radical polymerization of 1H, 1H, 2H, 2H-Tridecafluorooctyl methacrylate JF - Macromolecular chemistry and physics N2 - The SP-PLP-EPR technique is used to carry out a detailed investigation of the radical termination kinetics of 1H, 1H, 2H, 2H-tridecafluorooctyl methacrylate (TDFOMA) in bulk at relatively low conversion. Composite-model behavior for chain-length-dependent termination rate coefficients, kti,i, is observed. It is found that for TDFOMA, ic approximate to 60 independent of temperature, and as approximate to 0.65 and al approximate to 0.2 at 80 degrees C and above. However, at lower temperatures the situation is strikingly different, with the significantly higher average values of as = 0.89 +/- 0.15 and al = 0.32 +/- 0.10 being obtained at 50 degrees C and below. This makes TDFOMA the first monomer to be found that exhibits clearly different exponent values, as and al, at lower and higher temperature, and that has both a high as, like an acrylate, and a high ic, like a methacrylate. KW - ESR KW - EPR KW - kinetics (polym KW - ) KW - methacrylates KW - radical polymerization KW - termination Y1 - 2012 U6 - https://doi.org/10.1002/macp.201100479 SN - 1022-1352 VL - 213 IS - 1 SP - 19 EP - 28 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Herfurth, Christoph A1 - Voll, Dominik A1 - Buller, Jens A1 - Weiss, Jan A1 - Barner-Kowollik, Christopher A1 - Laschewsky, André T1 - Radical addition fragmentation chain transfer (RAFT) polymerization of ferrocenyl (meth)acrylates JF - Journal of polymer science : A, Polymer chemistry N2 - We report on the controlled free radical homopolymerization of 1-ferrocenylethyl acrylate as well as of three new ferrocene bearing monomers, namely 4-ferrocenylbutyl acrylate, 2-ferrocenylamido-2-methylpropyl acrylate, and 4-ferrocenylbutyl methacrylate, by the RAFT technique. For comparison, the latter monomer was polymerized using ATRP, too. The ferrocene containing monomers were found to be less reactive than their analogues free of ferrocene. The reasons for the low polymerizability are not entirely clear. As the addition of free ferrocene to the reaction mixture did not notably affect the polymerizations, sterical hindrance by the bulky ferrocene moiety fixed on the monomers seems to be the most probable explanation. Molar masses found for 1-ferrocenylethyl acrylate did not exceed 10,000 g mol(-1), while for 4-ferrocenylbutyl (meth) acrylate molar masses of 15,000 g mol(-1) could be obtained. With PDIs as low as 1.3 in RAFT polymerization of the monomers, good control over the polymerization was achieved. KW - ferrocene KW - living radical polymerization (LRP) KW - monomers KW - radical addition fragmentation chain transfer (RAFT) KW - radical polymerization KW - redox polymers KW - synthesis Y1 - 2012 U6 - https://doi.org/10.1002/pola.24994 SN - 0887-624X VL - 50 IS - 1 SP - 108 EP - 118 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Siegmann, Rebekka A1 - Möller, Eleonore A1 - Beuermann, Sabine T1 - Propagation rate coefficients for homogeneous phase VDF-HFP copolymerization in supercritical CO2 JF - Macromolecular rapid communications N2 - For the first time, propagation rate coefficients, kp,COPO, for the copolymerizations of vinylidene fluoride and hexafluoropropene have been determined. The kinetic data was determined via pulsed-laser polymerization in conjunction with polymer analysis via size-exclusion chromatography, the PLP-SEC technique. The experiments were carried out in homogeneous phase with supercritical CO2 as solvent for temperatures ranging from 45 to 90 degrees C. Absolute polymer molecular weights were calculated on the basis of experimentally determined MarkHouwink constants. The Arrhenius parameters of kp,COPO vary significantly compared with ethene, which is explained by the high electronegativity of fluorine and less intra- and intermolecular interactions between the partially fluorinated macroradicals. KW - copolymerization KW - fluorinated olefins KW - kinetics (polym) KW - pulse laser initiated polymerization KW - radical polymerization Y1 - 2012 U6 - https://doi.org/10.1002/marc.201200115 SN - 1022-1336 VL - 33 IS - 14 SP - 1208 EP - 1213 PB - Wiley-VCH CY - Weinheim ER -