TY - JOUR A1 - Matic, Aleksandar A1 - Schlaad, Helmut T1 - Thiol-ene photofunctionalization of 1,4-polymyrcene JF - Polymer international N2 - 1,4-Polymyrcene was synthesized by anionic polymerization of -myrcene and was subjected to photochemical functionalization with various thiols (i.e. methyl thioglycolate, methyl 3-mercaptopropionate, butyl 3-mercaptopropionate, ethyl 2-mercaptopropionate and 2-methyl-2-propanethiol) using benzophenone/UV light as the radical source. The yield of thiol addition to the trisubstituted double bonds of 1,4-polymyrcene decreased in the order 1 degrees thiol (ca 95%) > 2 degrees thiol (ca 80%) > 3 degrees thiol (<5%), due to the reversibility of the thiol-ene reaction. Remarkably, thiol addition to the side-chain double bonds was 8 - 10 times (1 degrees thiol) or 24 times (2 degrees thiol) faster than to the main-chain double bonds, which can be explained by the different accessibility of the double bonds and steric hindrance. Despite the use of a 10-fold excess of thiol with respect to myrcene units, the thiol-ene addition was accompanied by chain coupling reactions, which in the extreme case of 3 degrees thiol (or in the absence of thiol) resulted in the formation of insoluble crosslinked material. As an example, a methyl-thioglycolate-functionalized 1,4-polymyrcene was saponified/crosslinked to give submicron polyelectrolyte particles in dilute alkaline solution. (c) 2018 Society of Chemical Industry KW - polymyrcene KW - thiol-ene KW - photochemistry KW - regioselectivity Y1 - 2018 U6 - https://doi.org/10.1002/pi.5534 SN - 0959-8103 SN - 1097-0126 VL - 67 IS - 5 SP - 500 EP - 505 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Hardy, John G. A1 - Bertin, Annabelle A1 - Torres-Rendon, Jose Guillermo A1 - Leal-Egana, Aldo A1 - Humenik, Martin A1 - Bauer, Felix A1 - Walther, Andreas A1 - Cölfen, Helmut A1 - Schlaad, Helmut A1 - Scheibel, Thomas R. T1 - Facile photochemical modification of silk protein-based biomaterials JF - Macromolecular bioscience N2 - Silk protein-based materials show promise for application as biomaterials for tissue engineering. The simple and rapid photochemical modification of silk protein-based materials composed of either Bombyx mori silkworm silk or engineered spider silk proteins (eADF4(C16)) is reported. Radicals formed on the silk-based materials initiate the polymerization of monomers (acrylic acid, methacrylic acid, or allylamine) which functionalize the surface of the silk materials with poly(acrylic acid) (PAA), poly(methacrylic acid) (PMAA), or poly(allylamine) (PAAm). To demonstrate potential applications of this type of modification, the polymer-modified silks are mineralized. The PAA- and PMAA-functionalized silks are mineralized with calcium carbonate, whereas the PAAm-functionalized silks are mineralized with silica, both of which provide a coating on the materials that may be useful for bone tissue engineering, which will be the subject of future investigations. KW - biomaterials KW - chemical modification KW - photochemistry KW - silkworm silk KW - spider silk Y1 - 2018 U6 - https://doi.org/10.1002/mabi.201800216 SN - 1616-5187 SN - 1616-5195 VL - 18 IS - 11 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Goebel, Ronald A1 - Hesemann, Peter A1 - Friedrich, Alwin A1 - Rothe, Regina A1 - Schlaad, Helmut A1 - Taubert, Andreas T1 - Modular thiol-ene chemistry approach towards mesoporous silica monoliths with organically modified pore walls JF - Chemistry - a European journal N2 - The surface modification of mesoporous silica monoliths through thiol-ene chemistry is reported. First, mesoporous silica monoliths with vinyl, allyl, and thiol groups were synthesized through a sol-gel hydrolysis-poly-condensation reaction from tetramethyl orthosilicate (TMOS) and vinyltriethoxysilane, allyltriethoxysilane, and (3-mercaptopropyl) trimethoxysilane, respectively. By variation of the molar ratio of the comonomers TMOS and functional silane, mesoporous silica objects containing different amounts of vinyl, allyl, and thiol groups were obtained. These intermediates can subsequently be derivatized through radical photoaddition reactions either with a thiol or an olefin, depending on the initial pore wall functionality, to yield silica monoliths with different pore-wall chemistries. Nitrogen sorption, small-angle X-ray scattering, solid-state NMR spectroscopy, elemental analysis, thermogravimetric analysis, and redox titration demonstrate that the synthetic pathway influences the morphology and pore characteristics of the resulting monoliths and also plays a significant role in the efficiency of functionalization. Moreover, the different reactivity of the vinyl and allyl groups on the pore wall affects the addition reaction, and hence, the degree of the pore-wall functionalization. This report demonstrates that thiol-ene photoaddition reactions are a versatile platform for the generation of a large variety of organically modified silica monoliths with different pore surfaces. KW - mesoporous materials KW - photochemistry KW - sol-gel processes KW - surface chemistry Y1 - 2014 U6 - https://doi.org/10.1002/chem.201403982 SN - 0947-6539 SN - 1521-3765 VL - 20 IS - 52 SP - 17579 EP - 17589 PB - Wiley-VCH CY - Weinheim ER -