TY - JOUR A1 - Nguyen, Hung M. A1 - Schippers, Jos H. M. A1 - Goni-Ramos, Oscar A1 - Christoph, Mathias P. A1 - Dortay, Hakan A1 - van der Hoorn, Renier A. L. A1 - Müller-Röber, Bernd T1 - An upstream regulator of the 26S proteasome modulates organ size in Arabidopsis thaliana JF - The plant journal N2 - In both animal and plant kingdoms, body size is a fundamental but still poorly understood attribute of biological systems. Here we report that the Arabidopsis NAC transcription factor Regulator of Proteasomal Gene Expression' (RPX) controls leaf size by positively modulating proteasome activity. We further show that the cis-element recognized by RPX is evolutionarily conserved between higher plant species. Upon over-expression of RPX, plants exhibit reduced growth, which may be reversed by a low concentration of the pharmacological proteasome inhibitor MG132. These data suggest that the rate of protein turnover during growth is a critical parameter for determining final organ size. KW - Arabidopsis thaliana KW - organ size KW - evolution KW - leaf development KW - proteasome KW - gene regulatory network Y1 - 2013 U6 - https://doi.org/10.1111/tpj.12097 SN - 0960-7412 VL - 74 IS - 1 SP - 25 EP - 36 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Johnson, Kim L. A1 - Lenhard, Michael T1 - Genetic control of plant organ growth JF - New phytologist : international journal of plant science N2 - The growth of plant organs is under genetic control. Work in model species has identified a considerable number of genes that regulate different aspects of organ growth. This has led to an increasingly detailed knowledge about how the basic cellular processes underlying organ growth are controlled, and which factors determine when proliferation gives way to expansion, with this transition emerging as a critical decision point during primordium growth. Progress has been made in elucidating the genetic basis of allometric growth and the role of tissue polarity in shaping organs. We are also beginning to understand how the mechanisms that determine organ identity influence local growth behaviour to generate organs with characteristic sizes and shapes. Lastly, growth needs to be coordinated at several levels, for example between different cell layers and different regions within one organ, and the genetic basis for such coordination is being elucidated. However, despite these impressive advances, a number of basic questions are still not fully answered, for example, whether and how a growing primordium keeps track of its size. Answering these questions will likely depend on including additional approaches that are gaining in power and popularity, such as combined live imaging and modelling. KW - growth coordination KW - organ growth KW - organ identity KW - organ shape KW - organ size Y1 - 2011 U6 - https://doi.org/10.1111/j.1469-8137.2011.03737.x SN - 0028-646X VL - 191 IS - 2 SP - 319 EP - 333 PB - Wiley-Blackwell CY - Malden ER - TY - THES A1 - Schumacher, Julia T1 - Regulation and function of STERILE APETALA in Arabidopsis flower development N2 - STERILE APETALA (SAP) is known to be an essential regulator of flower development for over 20 years. Loss of SAP function in the model plant Arabidopsis thaliana is associated with a reduction of floral organ number, size and fertility. In accordance with the function of SAP during early flower development, its spatial expression in flowers is confined to meristematic stages and to developing ovules. However, to date, despite extensive research, the molecular function of SAP and the regulation of its spatio-temporal expression still remain elusive. In this work, amino acid sequence analysis and homology modeling revealed that SAP belongs to the rare class of plant F-box proteins with C-terminal WD40 repeats. In opisthokonts, this type of F-box proteins constitutes the substrate binding subunit of SCF complexes, which catalyze the ubiquitination of proteins to initiate their proteasomal degradation. With LC-MS/MS-based protein complex isolation, the interaction of SAP with major SCF complex subunits was confirmed. Additionally, candidate substrate proteins, such as the growth repressor PEAPOD 1 and 2 (PPD1/2), could be revealed during early stages of flower development. Also INDOLE-3-BUTYRIC ACID RESPONSE 5 (IBR5) was identified among putative interactors. Genetic analyses indicated that, different from substrate proteins, IBR5 is required for SAP function. Protein complex isolation together with transcriptome profiling emphasized that the SCFSAP complex integrates multiple biological processes, such as proliferative growth, vascular development, hormonal signaling and reproduction. Phenotypic analysis of sap mutant and SAP overexpressing plants positively correlated SAP function with plant growth during reproductive and vegetative development. Furthermore, to elaborate on the transcriptional regulation of SAP, publicly available ChIP-seq data of key floral homeotic proteins were reanalyzed. Here, it was shown that the MADS-domain transcription factors APETALA 1 (AP1), APETALA 3 (AP3), PISTILLATA (PI), AGAMOUS (AG) and SEPALLATA 3 (SEP3) bind to the SAP locus, which indicates that SAP is expressed in a floral organ-specific manner. Reporter gene analyses in combination with CRISPR/Cas9-mediated deletion of putative regulatory regions further demonstrated that the intron contains major regulatory elements of SAP in Arabidopsis thaliana. In conclusion, these data indicate that SAP is a pleiotropic developmental regulator that acts through tissue-specific destabilization of proteins. The presumed transcriptional regulation of SAP by the floral MADS-domain transcription factors could provide a missing link between the specification of floral organ identity and floral organ growth pathways. KW - STERILE APETALA KW - SAP KW - flower development KW - organ size KW - F-box KW - WD40 KW - SCF complex KW - ubiquitin KW - proteasomal degradation KW - MADS Y1 - 2019 ER -