TY - JOUR A1 - Schaller, Jörg A1 - Puppe, Daniel A1 - Kaczorek, Danuta A1 - Ellerbrock, Ruth A1 - Sommer, Michael T1 - Silicon cycling in soils revisited JF - Plants : open access journal N2 - Silicon (Si) speciation and availability in soils is highly important for ecosystem functioning, because Si is a beneficial element for plant growth. Si chemistry is highly complex compared to other elements in soils, because Si reaction rates are relatively slow and dependent on Si species. Consequently, we review the occurrence of different Si species in soil solution and their changes by polymerization, depolymerization, and condensation in relation to important soil processes. We show that an argumentation based on thermodynamic endmembers of Si dependent processes, as currently done, is often difficult, because some reactions such as mineral crystallization require months to years (sometimes even centuries or millennia). Furthermore, we give an overview of Si reactions in soil solution and the predominance of certain solid compounds, which is a neglected but important parameter controlling the availability, reactivity, and function of Si in soils. We further discuss the drivers of soil Si cycling and how humans interfere with these processes. The soil Si cycle is of major importance for ecosystem functioning; therefore, a deeper understanding of drivers of Si cycling (e.g., predominant speciation), human disturbances and the implication for important soil properties (water storage, nutrient availability, and micro aggregate stability) is of fundamental relevance. KW - andosols KW - clay neoformation KW - crop yield KW - land use change KW - micro KW - aggregate stability KW - phytoliths KW - sediments KW - silicon cycling KW - silicon KW - extraction methods KW - silicon pore water speciation Y1 - 2021 U6 - https://doi.org/10.3390/plants10020295 SN - 2223-7747 VL - 10 IS - 2 PB - MDPI CY - Basel ER - TY - JOUR A1 - Estendorfer, Jennifer A1 - Stempfhuber, Barbara A1 - Haury, Paula A1 - Vestergaard, Gisle A1 - Rillig, Matthias C. A1 - Joshi, Jasmin Radha A1 - Schröder, Peter A1 - Schloter, Michael T1 - The Influence of Land Use Intensity on the Plant-Associated Microbiome of Dactylis glomerata L. JF - Frontiers in plant science N2 - In this study, we investigated the impact of different land use intensities (LUI) on the root-associated microbiome of Dactylis glomerata (orchardgrass). For this purpose, eight sampling sites with different land use intensity levels but comparable soil properties were selected in the southwest of Germany. Experimental plots covered land use levels from natural grassland up to intensively managed meadows. We used 16S rRNA gene based barcoding to assess the plant-associated community structure in the endosphere, rhizosphere and bulk soil of D. glomerata. Samples were taken at the reproductive stage of the plant in early summer. Our data indicated that roots harbor a distinct bacterial community, which clearly differed from the microbiome of the rhizosphere and bulk soil. Our results revealed Pseudomonadaceae, Enterobacteriaceae and Comamonadaceae as the most abundant endophytes independently of land use intensity. Rhizosphere and bulk soil were dominated also by Proteobacteria, but the most abundant families differed from those obtained from root samples. In the soil, the effect of land use intensity was more pronounced compared to root endophytes leading to a clearly distinct pattern of bacterial communities under different LUI from rhizosphere and bulk soil vs. endophytes. Overall, a change of community structure on the plant-soil interface was observed, as the number of shared OTUs between all three compartments investigated increased with decreasing land use intensity. Thus, our findings suggest a stronger interaction of the plant with its surrounding soil under low land use intensity. Furthermore, the amount and quality of available nitrogen was identified as a major driver for shifts in the microbiome structure in all compartments. KW - Dactylis glomerata KW - land use change KW - endophytes KW - rhizosphere KW - soil microbiome KW - biodiversity Y1 - 2017 U6 - https://doi.org/10.3389/fpls.2017.00930 SN - 1664-462X VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Hunke, Philip A1 - Müller, Eva Nora A1 - Schröder-Esselbach, Boris A1 - Zeilhofer, Peter T1 - The Brazilian Cerrado: assessment of water and soil degradation in catchments under intensive agricultural use JF - Ecohydrology : ecosystems, land and water process interactions, ecohydrogeomorphology N2 - The Brazilian Cerrado is recognized as one of the most threatened biomes in the world, as the region has experienced a striking change from natural Cerrado vegetation to intense cash crop production. This paper reviews the history of land conversion in the Cerrado and the development of soil properties and water resources under past and ongoing land use. We compared soil and water quality parameters from different land uses considering 80 soil and 18 water studies conducted in different regions across the Cerrado to provide quantitative evidence of soil and water alterations from land use change. Following the conversion of native Cerrado, significant effects on soil pH, bulk density and available P and K for croplands and less-pronounced effects on pastures were evident. Soil total N did not differ between land uses because most of the sites classified as croplands were nitrogen-fixing soybeans, which are not artificially fertilized with N. In contrast, water quality studies showed nitrogen enrichment in agricultural catchments, indicating fertilizer impacts and potential susceptibility to eutrophication. Regardless of the land use, P is widely absent because of the high-fixing capacities of deeply weathered soils and the filtering capacity of riparian vegetation. Pesticides, however, were consistently detected throughout the entire aquatic system. In several case studies, extremely high-peak concentrations exceeded Brazilian and European Union (EU) water quality limits, which were potentially accompanied by serious health implications. Land use intensification is likely to continue, particularly in regions where less annual rainfall and severe droughts are projected in the northeastern and western Cerrado. Thus, the leaching risk and displacement of agrochemicals are expected to increase, particularly because the current legislation has caused a reduction in riparian vegetation. We conclude that land use intensification is likely to seriously limit the Cerrado's future regarding both agricultural productivity and ecosystem stability. Because only limited data are available, we recommend further field studies to understand the interaction between terrestrial and aquatic systems. This study may serve as a valuable database for integrated modelling to investigate the impact of land use and climate change on soil and water resources and to test and develop mitigation measures for the Cerrado. Copyright (C) 2014 John Wiley & Sons, Ltd. KW - Cerrado KW - land degradation KW - ecosystem change KW - water quality KW - soil parameters KW - ecohydrology KW - land use change KW - Mato Grosso KW - pesticides KW - cash crops Y1 - 2015 U6 - https://doi.org/10.1002/eco.1573 SN - 1936-0584 SN - 1936-0592 VL - 8 IS - 6 SP - 1154 EP - 1180 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Hayhoe, Shelby J. A1 - Neill, Christopher A1 - Porder, Stephen A1 - McHorney, Richard A1 - Lefebvre, Paul A1 - Coe, Michael T. A1 - Elsenbeer, Helmut A1 - Krusche, Alex V. T1 - Conversion to soy on the Amazonian agricultural frontier increases streamflow without affecting stormflow dynamics JF - Global change biology N2 - Large-scale soy agriculture in the southern Brazilian Amazon now rivals deforestation for pasture as the region's predominant form of land use change. Such landscape-level change can have substantial consequences for local and regional hydrology, but these effects remain relatively unstudied in this ecologically and economically important region. We examined how the conversion to soy agriculture influences water balances and stormflows using stream discharge (water yields) and the timing of discharge (stream hydrographs) in small (2.5-13.5 km2) forested and soy headwater watersheds in the Upper Xingu Watershed in the state of Mato Grosso, Brazil. We monitored water yield for 1 year in three forested and four soy watersheds. Mean daily water yields were approximately four times higher in soy than forested watersheds, and soy watersheds showed greater seasonal variability in discharge. The contribution of stormflows to annual streamflow in all streams was low (< 13% of annual streamflow), and the contribution of stormflow to streamflow did not differ between land uses. If the increases in water yield observed in this study are typical, landscape-scale conversion to soy substantially alters water-balance, potentially altering the regional hydrology over large areas of the southern Amazon. KW - Amazon KW - baseflow KW - hydrology KW - land use change KW - soybean cultivation KW - water yield Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-2486.2011.02392.x SN - 1354-1013 VL - 17 IS - 5 SP - 1821 EP - 1833 PB - Wiley-Blackwell CY - Malden ER -