TY - JOUR A1 - El Mellah, Ileyk A1 - Sander, Andreas Alexander Christoph A1 - Sundqvist, Jon Olof A1 - Keppens, Rony T1 - Formation of wind-captured disks in supergiant X-ray binaries Consequences for Vela X-1 and Cygnus X-1 JF - Astronomy and astrophysics : an international weekly journal N2 - Context. In supergiant X-ray binaries (SgXB), a compact object captures a fraction of the wind of an O/B supergiant on a close orbit. Proxies exist to evaluate the efficiency of mass and angular momentum accretion, but they depend so dramatically on the wind speed that given the current uncertainties, they only set loose constraints. Furthermore, these proxies often bypass the impact of orbital and shock effects on the flow structure. Aims. We study the wind dynamics and angular momentum gained as the flow is accreted. We identify the conditions for the formation of a disk-like structure around the accretor and the observational consequences for SgXB. Methods. We used recent results on the wind launching mechanism to compute 3D streamlines, accounting for the gravitational and X-ray ionizing influence of the compact companion on the wind. Once the flow enters the Roche lobe of the accretor, we solved the hydrodynamics equations with cooling. Results. A shocked region forms around the accretor as the flow is beamed. For wind speeds on the order of the orbital speed, the shock is highly asymmetric compared to the axisymmetric bow shock obtained for a purely planar homogeneous flow. With net radiative cooling, the flow always circularizes for sufficiently low wind speeds. Conclusions. Although the donor star does not fill its Roche lobe, the wind can be significantly beamed and bent by the orbital effects. The net angular momentum of the accreted flow is then sufficient to form a persistent disk-like structure. This mechanism could explain the proposed limited outer extension of the accretion disk in Cygnus X-1 and suggests the presence of a disk at the outer rim of the neutron star magnetosphere in Vela X-1 and has dramatic consequences on the spinning up of the accretor. KW - accretion, accretion disks KW - X-rays: binaries KW - stars: black holes KW - stars: neutron KW - supergiants KW - stars: winds, outflows Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201834498 SN - 1432-0746 VL - 622 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Gimenez-Garcia, Ana A1 - Shenar, Tomer A1 - Torrejon, J. M. A1 - Oskinova, Lida A1 - Martinez-Nunez, S. A1 - Hamann, Wolf-Rainer A1 - Rodes-Roca, J. J. A1 - González-Galan, A. A1 - Alonso-Santiago, J. A1 - González-Fernández, C. A1 - Bernabeu, Guillermo A1 - Sander, Andreas Alexander Christoph T1 - Measuring the stellar wind parameters in IGR J17544-2619 and Vela X-1 constrains the accretion physics in supergiant fast X-ray transient and classical supergiant X-ray binaries JF - Siberian Mathematical Journal N2 - Aims. To close this gap, we perform a comparative analysis of the optical companion in two important systems: IGR J175442619 (SFXT) and Vela X-1 (SGXB). We analyze the spectra of each star in detail and derive their stellar and wind properties. As a next step, we compare the wind parameters, giving us an excellent chance of recognizing key differences between donor winds in SFXTs and SGXBs. Methods. We use archival infrared, optical and ultraviolet observations, and analyze them with the non-local thermodynamic equilibrium (NLTE) Potsdam Wolf-Rayet model atmosphere code. We derive the physical properties of the stars and their stellar winds, accounting for the influence of X-rays on the stellar winds. Results. We find that the stellar parameters derived from the analysis generally agree well with the spectral types of the two donors: O9I (IGR J17544-2619) and B0.5Iae (Vela X-1). The distance to the sources have been revised and also agree well with the estimations already available in the literature. In IGR J17544-2619 we are able to narrow the uncertainty to d = 3.0 +/- 0.2 kpc. From the stellar radius of the donor and its X-ray behavior, the eccentricity of IGR J17544-2619 is constrained to e < 0.25. The derived chemical abundances point to certain mixing during the lifetime of the donors. An important difference between the stellar winds of the two stars is their terminal velocities (v(infinity) = 1500 km s(-1) in IGR J17544-2619 and v(infinity) = 700 km s(-1) in Vela X-1), which have important consequences on the X-ray luminosity of these sources. Conclusions. The donors of IGR J17544-2619 and Vela X-1 have similar spectral types as well as similar parameters that physically characterize them and their spectra. In addition, the orbital parameters of the systems are similar too, with a nearly circular orbit and short orbital period. However, they show moderate differences in their stellar wind velocity and the spin period of their neutron star which has a strong impact on the X-ray luminosity of the sources. This specific combination of wind speed and pulsar spin favors an accretion regime with a persistently high luminosity in Vela X-1, while it favors an inhibiting accretion mechanism in IGR J17544-2619. Our study demonstrates that the relative wind velocity is critical in class determination for the HMXBs hosting a supergiant donor, given that it may shift the accretion mechanism from direct accretion to propeller regimes when combined with other parameters. KW - accretion, accretion disks KW - methods: observational KW - techniques: spectroscopic KW - stars: atmospheres KW - X-rays: binaries KW - stars: winds, outflows Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201527551 SN - 1432-0746 VL - 591 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Kusterer, D. -J. A1 - Nagel, T. A1 - Hartmann, S. A1 - Werner, K. A1 - Feldmeier, Achim T1 - Monte Carlo radiation transfer in CV disk winds: application to the AM CVn prototype JF - Astronomy and astrophysics : an international weekly journal N2 - Context. AMCVn systems are ultracompact binaries in which a (semi-) degenerate star transfers helium-dominated matter onto a white dwarf. They are effective gravitational-wave emitters and potential progenitors of Type Ia supernovae. Aims. To understand the evolution of AMCVn systems it is necessary to determine their mass-loss rate through their radiation-driven accretion-disk wind. We constructed models to perform quantitative spectroscopy of P Cygni line profiles that were detected in UV spectra. Methods. We performed 2.5D Monte Carlo radiative transfer calculations in hydrodynamic wind structures by making use of realistic NLTE spectra from the accretion disk and by accounting for the white dwarf as an additional photon source. Results. We present first results from calculations in which LTE opacities are used in the wind model. A comparison with UV spectroscopy of the AMCVn prototype shows that the modeling procedure is potentially a good tool for determining mass-loss rates and abundances of trace metals in the helium-rich wind. KW - radiative transfer KW - stars: winds, outflows KW - stars: individual: AM CVn KW - accretion, accretion disks Y1 - 2014 U6 - https://doi.org/10.1051/0004-6361/201321438 SN - 0004-6361 SN - 1432-0746 VL - 561 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Aliu, E. A1 - Arlen, T. A1 - Aune, T. A1 - Beilicke, M. A1 - Benbow, W. A1 - Boettcher, Markus A1 - Bouvier, A. A1 - Bradbury, S. M. A1 - Buckley, J. H. A1 - Bugaev, V. A1 - Cannon, A. A1 - Cesarini, A. A1 - Ciupik, L. A1 - Collins-Hughes, E. A1 - Connolly, M. P. A1 - Cui, W. A1 - Dickherber, R. A1 - Errando, M. A1 - Falcone, A. A1 - Finley, J. P. A1 - Fortson, L. A1 - Furniss, A. A1 - Galante, N. A1 - Gall, D. A1 - Gillanders, G. H. A1 - Godambe, S. A1 - Griffin, S. A1 - Grube, J. A1 - Gyuk, G. A1 - Hanna, D. A1 - Holder, J. A1 - Huan, H. A1 - Hughes, G. A1 - Hui, C. M. A1 - Humensky, T. B. A1 - Kaaret, P. A1 - Karlsson, N. A1 - Kertzman, M. A1 - Kieda, D. A1 - Krawczynski, H. A1 - Krennrich, F. A1 - Madhavan, A. S. A1 - Maier, G. A1 - Majumdar, P. A1 - McArthur, S. A1 - McCann, A. A1 - Moriarty, P. A1 - Mukherjee, R. A1 - Ong, R. A. A1 - Orr, M. A1 - Otte, A. N. A1 - Park, N. A1 - Perkins, J. S. A1 - Pichel, A. A1 - Pohl, Martin A1 - Prokoph, H. A1 - Quinn, J. A1 - Ragan, K. A1 - Reyes, L. C. A1 - Reynolds, P. T. A1 - Roache, E. A1 - Rose, H. J. A1 - Ruppel, J. A1 - Saxon, D. B. A1 - Schroedter, M. A1 - Sembroski, G. H. A1 - Skole, C. A1 - Smith, A. W. A1 - Staszak, D. A1 - Tesic, G. A1 - Theiling, M. A1 - Thibadeau, S. A1 - Tsurusaki, K. A1 - Tyler, J. A1 - Varlotta, A. A1 - Vincent, S. A1 - Vivier, M. A1 - Wakely, S. P. A1 - Ward, J. E. A1 - Weinstein, A. A1 - Weisgarber, T. A1 - Williams, D. A. T1 - Veritas observations of unusual extragalactic transient swift J164449.3+573451 JF - The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters N2 - We report on very high energy (>100 GeV) gamma-ray observations of Swift J164449.3+573451, an unusual transient object first detected by the Swift Observatory and later detected by multiple radio, optical, and X-ray observatories. A total exposure of 28 hr was obtained on Swift J164449.3+573451 with the Very Energetic Radiation Imaging Telescope Array System ( VERITAS) during 2011 March 28-April 15. We do not detect the source and place a differential upper limit on the emission at 500 GeV during these observations of 1.4 x 10(-12) erg cm(-2) s(-1) (99% confidence level). We also present time-resolved upper limits and use a flux limit averaged over the X-ray flaring period to constrain various emission scenarios that can accommodate both the radio-through-X-ray emission detected from the source and the lack of detection by VERITAS. KW - accretion, accretion disks KW - galaxies: active KW - gamma rays: galaxies KW - radiation mechanisms: non-thermal Y1 - 2011 U6 - https://doi.org/10.1088/2041-8205/738/2/L30 SN - 2041-8205 VL - 738 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER -