TY - JOUR A1 - Klaus, Julian A1 - Zehe, Erwin A1 - Elsner, Martin A1 - Palm, Juliane A1 - Schneider, Dorothee A1 - Schroeder, Boris A1 - Steinbeiss, Sibylle A1 - van Schaik, Loes A1 - West, Stephanie T1 - Controls of event-based pesticide leaching in natural soils: A systematic study based on replicated field scale irrigation experiments JF - Journal of hydrology N2 - Tile drains strongly influence the water cycle in agricultural catchment in terms of water quantity and quality. The connectivity of preferential flow to tile drains can create shortcuts for rapid transport of solutes into surface waters. The leaching of pesticides can be linked to a set of main factors including, rainfall characteristics, soil moisture, chemical properties of the pesticides, soil properties, and preferential flow paths. The connectivity of the macropore system to the tile drain is crucial for pesticide leaching. Concurring influences of the main factors, threshold responses and the role of flow paths are still poorly understood. The objective of this study is to investigate these influences by a replica series of three irrigation experiments on a tile drain field site using natural and artificial tracers together with applied pesticides. We found a clear threshold behavior in the initialization of pesticide transport that was different between the replica experiments. Pre-event soil water contributed significantly to the tile drain flow, and creates a flow path for stored pesticides from the soil matrix to the tile drain. This threshold is controlled by antecedent soil moisture and precipitation characteristics, and the interaction between the soil matrix and preferential flow system. Fast transport of pesticides without retardation and the remobilization could be attributed to this threshold and the interaction between the soil matrix and the preferential flow system. Thus, understanding of the detailed preferential flow processes clearly enhances the understanding of pesticide leaching on event and long term scale, and can further improve risk assessment and modeling approaches. (C) 2014 Elsevier B.V. All rights reserved. KW - Irrigation experiment KW - Preferential flow KW - Threshold KW - Pesticide transport Y1 - 2014 U6 - https://doi.org/10.1016/j.jhydrol.2014.03.020 SN - 0022-1694 SN - 1879-2707 VL - 512 SP - 528 EP - 539 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dodoo, Samuel A1 - Balzer, Bizan N. A1 - Hugel, Thorsten A1 - Laschewsky, André A1 - von Klitzing, Regine T1 - Effect of ionic strength and layer number on swelling of polyelectrolyte multilayers in water vapour JF - Soft materials N2 - The swelling behavior of polyelectrolyte multilayers (PEMs) of poly(sodium-4 styrene sulfonate) (PSS) and poly(diallyl dimethyl ammonium chloride) (PDADMAC) prepared from aqueous solution of 0.1 M and 0.5 M NaCl are investigated by ellipsometry and Atomic Force Microscopy (AFM). From 1 double-layer up to 4 double-layers of 0.1 M NaCl, the amount of swelling water in the PEMs decreases with increasing number of adsorbed double layers due to an increase in polyelectrolyte density as a result of the attraction between the positively charged outermost PDADMAC layer and the Si substrate. From 6 double layers to 30 double layers, the attraction is reduced due to a much larger distance between substrate and outermost layer leading to a much lower polyelectrolyte density and higher swelling water. In PEMs prepared from aqueous solution of 0.5 M NaCl, the amount of water constantly increases which is related to a monotonically decreasing polyelectrolyte density with increasing number of polyelectrolyte layers. Studies of the surface topology also indicate a transition from a more substrate affected interphase behavior to a continuum properties of the polyelectrolyte multilayers. The threshold for the transition from interphase to continuum behavior depends on the preparation conditions of the PEM. KW - Continuum properties KW - Interphase behavior KW - Ionic strength KW - Multilayers KW - Polyelectrolytes KW - Substrate effect KW - Swelling behavior KW - Threshold KW - Water vapor Y1 - 2013 U6 - https://doi.org/10.1080/1539445X.2011.607203 SN - 1539-445X VL - 11 IS - 2 SP - 157 EP - 164 PB - Taylor & Francis Group CY - Philadelphia ER -