TY - JOUR A1 - Gömöry, Peter A1 - Balthasar, Horst A1 - Kuckein, Christoph A1 - Koza, Julis A1 - Veronig, Astrid M. A1 - González Manrique, Sergio Javier A1 - Kucera, Ales A1 - Schwartz, Pavol A1 - Hanslmeier, Arnold T1 - Flare-induced changes of the photospheric magnetic field in a delta-spot deduced from ground-based observations JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. Changes of the magnetic field and the line-of-sight velocities in the photosphere are being reported for an M-class flare that originated at a delta-spot belonging to active region NOAA 11865. Methods. High-resolution ground-based near-infrared spectropolarimetric observations were acquired simultaneously in two photospheric spectral lines, Fe I 10783 angstrom and Si I 10786 angstrom, with the Tenerife Infrared Polarimeter at the Vacuum Tower Telescope (VTT) in Tenerife on 2013 October 15. The observations covered several stages of the M-class flare. Inversions of the full-Stokes vector of both lines were carried out and the results were put into context using (extreme)-ultraviolet filtergrams from the Solar Dynamics Observatory (SDO). Results. The active region showed high flaring activity during the whole observing period. After the M-class flare, the longitudinal magnetic field did not show significant changes along the polarity inversion line (PIL). However, an enhancement of the transverse magnetic field of approximately 550G was found that bridges the PIL and connects umbrae of opposite polarities in the delta-spot. At the same time, a newly formed system of loops appeared co-spatially in the corona as seen in 171 angstrom filtergrams of the Atmospheric Imaging Assembly (AIA) on board SDO. However, we cannot exclude that the magnetic connection between the umbrae already existed in the upper atmosphere before the M-class flare and became visible only later when it was filled with hot plasma. The photospheric Doppler velocities show a persistent upflow pattern along the PIL without significant changes due to the flare. Conclusions. The increase of the transverse component of the magnetic field after the flare together with the newly formed loop system in the corona support recent predictions of flare models and flare observations. KW - Sun: magnetic fields KW - sunspots KW - Sun: photosphere KW - Sun: flares KW - techniques: polarimetric Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201730644 SN - 1432-0746 VL - 602 SP - 14 EP - 27 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Louis, Rohan E. A1 - Puschmann, Klaus G. A1 - Kliem, Bernhard A1 - Balthasar, Horst A1 - Denker, Carsten T1 - Sunspot splitting triggering an eruptive flare JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. We investigate how the splitting of the leading sunspot and associated flux emergence and cancellation in active region NOAA 11515 caused an eruptive M5.6 flare on 2012 July 2. Methods. Continuum intensity, line-of-sight magnetogram, and dopplergram data of the Helioseismic and Magnetic Imager were employed to analyse the photospheric evolution. Filtergrams in H alpha and He I 10830 angstrom of the Chromospheric Telescope at the Observatorio del Teide, Tenerife, track the evolution of the flare. The corresponding coronal conditions were derived from 171 angstrom and 304 angstrom images of the Atmospheric Imaging Assembly. Local correlation tracking was utilized to determine shear flows. Results. Emerging flux formed a neutral line ahead of the leading sunspot and new satellite spots. The sunspot splitting caused a long-lasting flow towards this neutral line, where a filament formed. Further flux emergence, partly of mixed polarity, as well as episodes of flux cancellation occurred repeatedly at the neutral line. Following a nearby C-class precursor flare with signs of interaction with the filament, the filament erupted nearly simultaneously with the onset of the M5.6 flare and evolved into a coronal mass ejection. The sunspot stretched without forming a light bridge, splitting unusually fast (within about a day, complete approximate to 6 h after the eruption) in two nearly equal parts. The front part separated strongly from the active region to approach the neighbouring active region where all its coronal magnetic connections were rooted. It also rotated rapidly (by 4.9 degrees h(-1)) and caused significant shear flows at its edge. Conclusions. The eruption resulted from a complex sequence of processes in the (sub-)photosphere and corona. The persistent flows towards the neutral line likely caused the formation of a flux rope that held the filament. These flows, their associated flux cancellation, the emerging flux, and the precursor flare all contributed to the destabilization of the flux rope. We interpret the sunspot splitting as the separation of two flux bundles differently rooted in the convection zone and only temporarily joined in the spot. This explains the rotation as the continued rise of the separating flux, and it implies that at least this part of the sunspot was still connected to its roots deep in the convection zone. KW - Sun: flares KW - sunspots KW - Sun: photosphere KW - Sun: chromosphere KW - techniques: photometric Y1 - 2014 U6 - https://doi.org/10.1051/0004-6361/201321106 SN - 0004-6361 SN - 1432-0746 VL - 562 PB - EDP Sciences CY - Les Ulis ER -