TY - JOUR A1 - Watanabe, Mutsumi A1 - Tohge, Takayuki A1 - Balazadeh, Salma A1 - Erban, Alexander A1 - Giavalisco, Patrick A1 - Kopka, Joachim A1 - Mueller-Roeber, Bernd A1 - Fernie, Alisdair R. A1 - Hoefgen, Rainer T1 - Comprehensive Metabolomics Studies of Plant Developmental Senescence JF - Plant Senescence: Methods and Protocols N2 - Leaf senescence is an essential developmental process that involves diverse metabolic changes associated with degradation of macromolecules allowing nutrient recycling and remobilization. In contrast to the significant progress in transcriptomic analysis of leaf senescence, metabolomics analyses have been relatively limited. A broad overview of metabolic changes during leaf senescence including the interactions between various metabolic pathways is required to gain a better understanding of the leaf senescence allowing to link transcriptomics with metabolomics and physiology. In this chapter, we describe how to obtain comprehensive metabolite profiles and how to dissect metabolic shifts during leaf senescence in the model plant Arabidopsis thaliana. Unlike nucleic acid analysis for transcriptomics, a comprehensive metabolite profile can only be achieved by combining a suite of analytic tools. Here, information is provided for measurements of the contents of chlorophyll, soluble proteins, and starch by spectrophotometric methods, ions by ion chromatography, thiols and amino acids by HPLC, primary metabolites by GC/TOF-MS, and secondary metabolites and lipophilic metabolites by LC/ESI-MS. These metabolite profiles provide a rich catalogue of metabolic changes during leaf senescence, which is a helpful database and blueprint to be correlated to future studies such as transcriptome and proteome analyses, forward and reverse genetic studies, or stress-induced senescence studies. KW - Senescence KW - Metabolomics KW - Arabidopsis KW - GC/MS KW - LC/MS KW - HPLC KW - IC Y1 - 2018 SN - 978-1-4939-7672-0 SN - 978-1-4939-7670-6 U6 - https://doi.org/10.1007/978-1-4939-7672-0_28 SN - 1064-3745 SN - 1940-6029 VL - 1744 SP - 339 EP - 358 PB - Humana Press CY - Totowa ER - TY - JOUR A1 - Franco-Obregon, Alfredo A1 - Cambria, Elena A1 - Greutert, Helen A1 - Wernas, Timon A1 - Hitzl, Wolfgang A1 - Egli, Marcel A1 - Sekiguchi, Miho A1 - Boos, Norbert A1 - Hausmann, Oliver A1 - Ferguson, Stephen J. A1 - Kobayashi, Hiroshi A1 - Würtz-Kozak, Karin T1 - TRPC6 in simulated microgravity of intervertebral disc cells JF - European Spine Journal N2 - Purpose Prolonged bed rest and microgravity in space cause intervertebral disc (IVD) degeneration. However, the underlying molecular mechanisms are not completely understood. Transient receptor potential canonical (TRPC) channels are implicated in mechanosensing of several tissues, but are poorly explored in IVDs. Methods Primary human IVD cells from surgical biopsies composed of both annulus fibrosus and nucleus pulposus (passage 1-2) were exposed to simulated microgravity and to the TRPC channel inhibitor SKF-96365 (SKF) for up to 5days. Proliferative capacity, cell cycle distribution, senescence and TRPC channel expression were analyzed. Results Both simulated microgravity and TRPC channel antagonism reduced the proliferative capacity of IVD cells and induced senescence. While significant changes in cell cycle distributions (reduction in G1 and accumulation in G2/M) were observed upon SKF treatment, the effect was small upon 3days of simulated microgravity. Finally, downregulation of TRPC6 was shown under simulated microgravity. Conclusions Simulated microgravity and TRPC channel inhibition both led to reduced proliferation and increased senescence. Furthermore, simulated microgravity reduced TRPC6 expression. IVD cell senescence and mechanotransduction may hence potentially be regulated by TRPC6 expression. This study thus reveals promising targets for future studies. KW - Intervertebral disc KW - Simulated microgravity KW - Senescence KW - TRP channels KW - Mechanotransduction KW - Gene expression Y1 - 2018 U6 - https://doi.org/10.1007/s00586-018-5688-8 SN - 0940-6719 SN - 1432-0932 VL - 27 IS - 10 SP - 2621 EP - 2630 PB - Springer CY - New York ER - TY - JOUR A1 - Müller-Röber, Bernd A1 - Balazadeh, Salma T1 - Auxin and its role in plant senescence JF - Journal of plant growth regulation N2 - Leaf senescence represents a key developmental process through which resources trapped in the photosynthetic organ are degraded in an organized manner and transported away to sustain the growth of other organs including newly forming leaves, roots, seeds, and fruits. The optimal timing of the initiation and progression of senescence are thus prerequisites for controlled plant growth, biomass accumulation, and evolutionary success through seed dispersal. Recent research has uncovered a multitude of regulatory factors including transcription factors, micro-RNAs, protein kinases, and others that constitute the molecular networks that regulate senescence in plants. The timing of senescence is affected by environmental conditions and abiotic or biotic stresses typically trigger a faster senescence. Various phytohormones, including for example ethylene, abscisic acid, and salicylic acid, promote senescence, whereas cytokinins delay it. Recently, several reports have indicated an involvement of auxin in the control of senescence, however, its mode of action and point of interference with senescence control mechanisms remain vaguely defined at present and contrasting observations regarding the effect of auxin on senescence have so far hindered the establishment of a coherent model. Here, we summarize recent studies on auxin-related genes that affect senescence in plants and highlight how these findings might be integrated into current molecular-regulatory models of senescence. KW - ARF KW - Auxin KW - Chloroplast KW - Development KW - Leaf KW - SAUR KW - Senescence KW - Signaling KW - Transcription factor KW - YUCCA Y1 - 2014 U6 - https://doi.org/10.1007/s00344-013-9398-5 SN - 0721-7595 SN - 1435-8107 VL - 33 IS - 1 SP - 21 EP - 33 PB - Springer CY - New York ER - TY - JOUR A1 - Sakuraba, Yasuhito A1 - Balazadeh, Salma A1 - Tanaka, Ryouichi A1 - Müller-Röber, Bernd A1 - Tanaka, Ayumi T1 - Overproduction of Chl b retards senescence through transcriptional reprogramming in arabidopsis JF - Plant & cell physiology N2 - Leaf senescence is a developmentally and environmentally regulated process which includes global changes in gene expression. Using Arabidopsis as a model, we modified Chl arrangement in photosystems by overexpressing the catalytic domain (the C domain) of chlorophyllide a oxygenase (CAO) fused with the linker domain (the B domain) of CAO and green fluorescent protein (GFP). In these plants (referred to as the BCG plants for the B and C domains of CAO and GFP), the Chl a/b ratio was drastically decreased and Chl b was incorporated into core antenna complexes. The BCG plants exhibited a significant delay of both developmental and dark-induced leaf senescence. The photosynthetic apparatus, CO2 fixation enzymes and the chloroplast structure were lost in wild-type plants during senescence, while BCG plants retained them longer than the wild type. Large-scale quantitative real-time PCR analyses of 1,880 transcription factor (TF) genes showed that 241 TFs are differentially expressed between BCG plants and wild-type plants at senescence, similar to 40% of which are known senescence-associated genes (SAGs). Expression profiling also revealed the down-regulation of a large number of additional non-TF SAGs. In contrast, genes involved in photosynthesis were up-regulated, while those encoding Chl degradation enzymes were down-regulated in BCG plants. These results demonstrate that alteration of pigment composition in the photosynthetic apparatus retards senescence through transcriptional reprogramming. KW - Arabidopsis KW - Chloroplast KW - Chlorophyllide a oxygenase KW - Photosynthesis KW - Senescence Y1 - 2012 U6 - https://doi.org/10.1093/pcp/pcs006 SN - 0032-0781 VL - 53 IS - 3 SP - 505 EP - 517 PB - Oxford Univ. Press CY - Oxford ER -