TY - JOUR A1 - Omel'chenko, Oleh T1 - Mathematical framework for breathing chimera states JF - Journal of nonlinear science N2 - About two decades ago it was discovered that systems of nonlocally coupled oscillators can exhibit unusual symmetry-breaking patterns composed of coherent and incoherent regions. Since then such patterns, called chimera states, have been the subject of intensive study but mostly in the stationary case when the coarse-grained system dynamics remains unchanged over time. Nonstationary coherence-incoherence patterns, in particular periodically breathing chimera states, were also reported, however not investigated systematically because of their complexity. In this paper we suggest a semi-analytic solution to the above problem providing a mathematical framework for the analysis of breathing chimera states in a ring of nonlocally coupled phase oscillators. Our approach relies on the consideration of an integro-differential equation describing the long-term coarse-grained dynamics of the oscillator system. For this equation we specify a class of solutions relevant to breathing chimera states. We derive a self-consistency equation for these solutions and carry out their stability analysis. We show that our approach correctly predicts macroscopic features of breathing chimera states. Moreover, we point out its potential application to other models which can be studied using the Ott-Antonsen reduction technique. KW - Coupled oscillators KW - Breathing chimera states KW - Coherence-incoherence KW - patterns KW - Ott-Antonsen equation KW - Periodic solutions KW - Stability Y1 - 2022 U6 - https://doi.org/10.1007/s00332-021-09779-1 SN - 0938-8974 SN - 1432-1467 VL - 32 IS - 2 PB - Springer CY - New York ER -