TY - JOUR A1 - Landgraf, Angela A1 - Zielke, Olaf A1 - Arrowsmith, J. Ramón A1 - Ballato, Paolo A1 - Strecker, Manfred A1 - Schildgen, Taylor F. A1 - Friedrich, Anke M. A1 - Tabatabaei, Sayyed-Hassan T1 - Differentiating simple and composite tectonic landscapes using numerical fault slip modeling with an example from the south central Alborz Mountains, Iran JF - Journal of geophysical research : Earth surface N2 - The tectonically driven growth of mountains reflects the characteristics of the underlying fault systems and the applied tectonic forces. Over time, fault networks might be relatively static, but stress conditions could change and result in variations in fault slip orientation. Such a tectonic landscape would transition from a simple to a composite state: the topography of simple landscapes is correlated with a single set of tectonic boundary conditions, while composite landscapes contain inherited topography due to earlier deformation under different boundary conditions. We use fault interaction modeling to compare vertical displacement fields with topographic metrics to differentiate the two types of landscapes. By successively rotating the axis of maximum horizontal stress, we produce a suite of vertical displacement fields for comparison with real landscapes. We apply this model to a transpressional duplex in the south central Alborz Mountains of Iran, where NW oriented compression was superseded by neotectonic NE compression. The consistency between the modeled displacement field and real landforms indicates that the duplex topography is mostly compatible with the modern boundary conditions, but might include a small remnant from the earlier deformation phase. Our approach is applicable for various tectonic settings and represents an approach to identify the changing boundary conditions that produce composite landscapes. It may be particularly useful for identifying changes that occurred in regions where river profiles may no longer record a signal of the change or where the spatial pattern of uplift is complex. KW - fault interaction KW - landscape evolution KW - numerical modeling KW - Alborz Mountains KW - Iran Y1 - 2013 U6 - https://doi.org/10.1002/jgrf.20109 SN - 2169-9003 SN - 2169-9011 VL - 118 IS - 3 SP - 1792 EP - 1805 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Ballato, Paolo A1 - Strecker, Manfred T1 - Assessing tectonic and climatic causal mechanisms in foreland-basin stratal architecture: insights from the Alborz Mountains, northern Iran JF - Earth surface processes and landforms : the journal of the British Geomorphological Research Group N2 - The southern foreland basin of the Alborz Mountains of northern Iran is characterized by an approximately 7.3-km-thick sequence of Miocene sedimentary rocks, constituting three basin-wde coarsening-upward units spanning a period of 10(6)years. We assess available magnetostratigraphy, paleoclimatic reconstructions, stratal architecture, records of depositional environments, and sediment-provenance data to characterize the relationships between tectonically-generated accommodation space (A) and sediment supply (S). Our analysis allows an inversion of the stratigraphy for particular forcing mechanisms, documenting causal relationships, and providing a basis to decipher the relative contributions of tectonics and climate (inferred changes in precipitation) in controlling sediment supply to the foreland basin. Specifically, A/S>1, typical of each basal unit (17.5-16.0, 13.8-13.1 and 10.3-9.6Ma), is associated with sharp facies retrogradation and reflects substantial tectonic subsidence. Within these time intervals, arid climatic conditions, changes in sediment provenance, and accelerated exhumation in the orogen suggest that sediment supply was most likely driven by high uplift rates. Conversely, A/S<1 (13.8 and 13.8-11Ma, units 1, and 2) reflects facies progradation during a sharp decline in tectonic subsidence caused by localized intra-basinal uplift. During these time intervals, climate continued to be arid and exhumation active, suggesting that sediment supply was again controlled by tectonics. A/S<1, at 11-10.3Ma and 9-6-7.6Ma (and possibly 6.2; top of units 2 and 3), is also associated with two episodes of extensive progradation, but during wetter phases. The first episode appears to have been linked to a pulse in sediment supply driven by an increase in precipitation. The second episode reflects a balance between a climatically-induced increase in sediment supply and a reduction of subsidence through the incorporation of the proximal foreland into the orogenic wedge. This in turn caused an expansion of the catchment and a consequent further increase in sediment supply. KW - sediment supply KW - climatic and tectonic forcing KW - accommodation-space KW - sediment-supply ratio (A /S) KW - foreland-basin stratigraphy KW - Alborz Mountains Y1 - 2014 U6 - https://doi.org/10.1002/esp.3480 SN - 0197-9337 SN - 1096-9837 VL - 39 IS - 1 SP - 110 EP - 125 PB - Wiley-Blackwell CY - Hoboken ER -