TY - JOUR A1 - Geißler, Katja A1 - Heblack, Jessica A1 - Uugulu, Shoopala A1 - Wanke, Heike A1 - Blaum, Niels T1 - Partitioning of Water Between Differently Sized Shrubs and Potential Groundwater Recharge in a Semiarid Savanna in Namibia JF - Frontiers in Plant Science N2 - Introduction: Many semiarid regions around the world are presently experiencing significant changes in both climatic conditions and vegetation. This includes a disturbed coexistence between grasses and bushes also known as bush encroachment, and altered precipitation patterns with larger rain events. Fewer, more intense precipitation events might promote groundwater recharge, but depending on the structure of the vegetation also encourage further woody encroachment. Materials and Methods: In this study, we investigated how patterns and sources of water uptake of Acacia mellifera (blackthorn), an important encroaching woody plant in southern African savannas, are associated with the intensity of rain events and the size of individual shrubs. The study was conducted at a commercial cattle farm in the semiarid Kalahari in Namibia (MAP 250 mm/a). We used soil moisture dynamics in different depths and natural stable isotopes as markers of water sources. Xylem water of fifteen differently sized individuals during eight rain events was extracted using a Scholander pressure bomb. Results and Discussion: Results suggest the main rooting activity zone of A. mellifera in 50 and 75 cm soil depth but a reasonable water uptake from 10 and 25 cm. Any apparent uptake pattern seems to be driven by water availability, not time in the season. Bushes prefer the deeper soil layers after heavier rain events, indicating some evidence for the classical Walter’s two-layer hypothesis. However, rain events up to a threshold of 6 mm/day cause shallower depths of use and suggest several phases of intense competition with perennial grasses. The temporal uptake pattern does not depend on shrub size, suggesting a fast upwards water flow inside. d2H and d18O values in xylem water indicate that larger shrubs rely less on upper and very deep soil water than smaller shrubs. It supports the hypothesis that in environments where soil moisture is highly variable in the upper soil layers, the early investment in a deep tap-root to exploit deeper, more reliable water sources could reduce the probability of mortality during the establishment phase. Nevertheless, independent of size and time in the season, bushes do not compete with potential groundwater recharge. In a savanna encroached by A. mellifera, groundwater will most likely be affected indirectly. KW - bush encroachment KW - groundwater recharge KW - rooting depth KW - Savannas KW - stable isotopes KW - shrub size KW - Acacia mellifera KW - rain event depth Y1 - 2019 U6 - https://doi.org/10.3389/fpls.2019.01411 SN - 1664-462X VL - 10 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Lohmann, Dirk A1 - Tietjen, Britta A1 - Blaum, Niels A1 - Joubert, David Francois A1 - Jeltsch, Florian T1 - Prescribed fire as a tool for managing shrub encroachment in semi-arid savanna rangelands JF - Journal of arid environments N2 - Savanna rangelands worldwide are threatened by shrub encroachment, i.e. the increase of woody plant species at the cost of perennial grasses, causing a strong decline in the productivity of domestic livestock production. Although recent studies indicate that fire might be of great importance for semi-arid and arid savanna dynamics, it is largely not applied in the management of semi-arid rangelands especially with regard to woody plant control. We used the eco-hydrological savanna model EcoHyD to simulate the effects of different fire management strategies on semi-arid savanna vegetation and to assess their longterm suitability for semi-arid rangeland management. Simulation results show that prescribed fires, timed to kill tree seedlings prevented shrub encroachment for a broad range of livestock densities while the possible maximum long-term cattle densities on the simulated semi-arid rangeland in Namibia increased by more than 30%. However, when grazing intensity was too high, fire management failed in preventing shrub encroachment. Our findings indicate that with regard to fire management a clear distinction between mesic and more arid savannas is necessary: While the frequency of fires is of relevance for mesic savannas, we recommend a fire management focussing on the timing of fire for semi-arid and arid savannas. (C) 2014 Elsevier Ltd. All rights reserved. KW - Acacia mellifera KW - Bush encroachment KW - Dry land degradation KW - Rangeland management KW - Simulation model KW - Southern Africa Y1 - 2014 U6 - https://doi.org/10.1016/j.jaridenv.2014.04.003 SN - 0140-1963 SN - 1095-922X VL - 107 SP - 49 EP - 56 PB - Elsevier CY - London ER -