TY - JOUR A1 - Bendjeddou, Mohammed Lamine A1 - Loumassine, Hibat Allah A1 - Scheffler, Ingo A1 - Bouslama, Zihad A1 - Amr, Zuhair T1 - Bat ectoparasites (Nycteribiidae, Streblidae, Siphonaptera, Heteroptera, Mesostigmata, Argasidae, and Ixodidae) from Algeria JF - Journal of Vector Ecology N2 - Twenty two species of ectoparasites (Family Nycteribiidae: Nycteribia (Listropoda) schmidlii schmidlii, Nycteribia (Nycteribia) latreillii, Nycteribia (Nycteribia) pedicularia, Penicillidia (Penicillidia) dufourii, and Phthiridium biarticulatum; Family Streblidae: Brachytarsina (Brachytarsina) flavipennis and Raymondia huberi; Order Siphonaptera: Rhinolophopsylla unipectinata arabs, Nycteridopsylla longiceps, Araeopsylla gestroi, Ischnopsyllus intermedius, and Ischnopsyllus octactenus; Order Heteroptera: Cimex pipistrelli, Cimex lectularius, and Cacodmus vicinus; Class Arachnida: Order Mesostigmata: Spinturnix myoti and Eyndhovenia euryalis; Order Ixodida: Family Argasidae: Argas transgariepinus and Argas vespertilionis; Family Ixodidae: Hyalomma dromedarii, Ixodes ricinus, and Ixodes vespertilionis) were recovered from 19 bat species in Algeria. New host records for bats are recorded for the first time: N. schmidlii from Rh. clivosus and R. cystops; N. latreillii from Rh. blasii and P. gaisleri; R. huberi from Rh. clivosus; C. pipistrelli from E. isabellinus and H. savii; C. vicinus from E. isabellinus; S. myoti from P. gaisleri; E. euryalis from P. gaisleri and Rh. blasii; A. vespertilionis from P. gaisleri; I. ricinus from T. teniotis and Rh. hipposideros and H. dromedarii from P. kuhlii. Raymondia huberi is recorded for the first time from Algeria. KW - Bats KW - Nycteribiidae KW - Streblidae KW - Siphonaptera KW - Heteroptera KW - Mesostigmata KW - Argasidae KW - Ixodidae KW - Algeria Y1 - 2017 U6 - https://doi.org/10.1111/jvec.12235 SN - 1948-7134 VL - 42 SP - 13 EP - 23 PB - Wiley Interscience CY - Hoboken, NJ ER - TY - JOUR A1 - Chemam, Asma A1 - Hadjzobir, Soraya A1 - Daif, Menana A1 - Altenberger, Uwe A1 - Günter, Christina T1 - Provenance analyses of the heavy-mineral beach sands of the Annaba coast, northeast Algeria, and their consequences for the evaluation of fossil placer deposit JF - Journal of earth system science N2 - The paper presents the first study of heavy-mineral sand beaches from the Mediterranean coast of Annaba/Algeria. The studied beaches run along the basement outcrops of the Edough massif, which are mainly composed by micaschists, tourmaline-rich quartzo-feldspathic veins, gneisses, skarns and marbles. Sand samples were taken from three localities (Ain Achir, Plage-Militaire and El Nasr). The heavy-mineral fraction comprises between 74 and 91 vol%. The garnets of the beaches are almandine rich and tourmalines vary with respect to their location from schorl to dravite. Tourmaline at Ain Achir and the Plage-Militaire is schorlits, while at El Nasr beach dravite is ubiquitous. The World Shale Average normalised REE of the sands and the basement outcrops reveal: (i) Ain Achir beach: REE pattern of sand and the coastal rocks from the studied beaches reflects a multiple sources; (ii) Plage-Militaire: the sand and the coastal outcrops show similar LREE and a strong enrichment in HREE, suggesting the presence HREE-rich phases found as inclusions in staurolite; (iii) El Nasr: two types of sand patterns are found: one with flat REE pattern similar to the proximal rocks and other one enriched in HREE suggesting a mixed source. KW - Provenance KW - heavy minerals KW - beach sediments KW - fossil placer KW - geochemistry KW - Annaba KW - Algeria Y1 - 2018 U6 - https://doi.org/10.1007/s12040-018-1019-z SN - 0253-4126 SN - 0973-774X VL - 127 IS - 8 PB - Indian Academy of Science CY - Bangalore ER - TY - JOUR A1 - Zobir, Soraya Hadj A1 - Altenberger, Uwe A1 - Günter, Christina T1 - Geochemistry and petrology of metamorphosed submarine basic ashes in the Edough Massif (Cap de Garde, Annaba, northeastern Algeria) JF - Comptes rendus geoscience N2 - The study presents the first evidence of metamorphosed submarine ashes in the Edough Massif, in northeastern Algeria. It occurs below the greenschist-facies Tellian units that represent the thrusted Mesozoic to Eocene passive paleomargin of northern Africa deposited on thinned continental crust. The metamorphic complex consists of tectonically superposed units composed of gneisses (lower unit) and micaschists (upper unit). At the Cap de Garde, these units enclose an "intermediate unit" composed of micaschists and meter-thick layers of marbles, which are sometimes intercalated with amphibolites. The latter occur as discontinuous small lenses and layers. The amphibolites are parallel to the primary bedding of the marbles and the main foliation. Chemical markers and field observations indicate that they are metamorphic equivalents of basic igneous rocks. The lenticular character, low thickness and multiple intercalations with marine sediments and the unusual high lithium concentrations suggest subaqueous near-source basaltic ash-fall deposits in a marine environment. (C) 2014 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved. KW - Amphibolites KW - Submarine sediments KW - Basaltic ash-fall deposits KW - Edough KW - Algeria Y1 - 2014 U6 - https://doi.org/10.1016/j.crte.2014.09.002 SN - 1631-0713 SN - 1778-7025 VL - 346 IS - 9-10 SP - 244 EP - 254 PB - Elsevier CY - Paris ER - TY - JOUR A1 - Zobir, Soraya Hadj A1 - Mocek, Beate T1 - Determination of the source rocks for the diatexites from the Edough Massif, Annaba, NE Algeria JF - Journal of African earth sciences N2 - The crystalline Edough Massif is located in the oriental part of the Algerian coastline. It consists of two tectonically superposed units of gneisses, augen-gneisses and migmatitic gneisses in the lower unit and micaschists in the upper unit. The crystalline rocks underwent a low to moderate degree of metamorphism; the gneisses suffered partial melting. They display migmatitic features such as nebulitic structures with contorted leucosome layers and K-feldspar porphyroblasts and thus can be classified as diatexites. The mineralogical composition of these rocks is very homogenous and consists of K-feldspar, micas and quartz. The feldspar-rich, arkosic nature of the outcrop implies a granitic source rock. High K2O/Na2O ratios and high A/CNK > 1.1 indicate an S-type granite source and a peraluminous composition of the protolith respectively. Chondrite normalized REE distribution patterns of the Edough diatexites show gently inclined patterns with a minor negative Eu anomaly (Eu/Eu* = 0.36-0.49), which points to a very slightly differentiated granitic source. The REE pattern and trace element data of the diatexites are similar to those of average Proterozoic upper continental crust, which suggests that they are derived mainly from upper continental crust and were deposited in continental margins. KW - Diatexites KW - Arkose KW - Protolith KW - S-type granite KW - Edough KW - Algeria Y1 - 2012 U6 - https://doi.org/10.1016/j.jafrearsci.2012.04.004 SN - 1464-343X VL - 69 IS - 13 SP - 26 EP - 33 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Zobir, Soraya Hadj A1 - Oberhänsli, Roland T1 - The sidi Mohamed peridotites (Edough Massif, NE Algeria) - evidence for an upper mantle origin JF - Journal of earth system science N2 - The Hercynian Edough massif is the easternmost crystalline massif of the Algerian coast. It consists of two tectonically superposed units composed of micaschists, gneisses, and peridotite. This study concentrates on the small and isolated Sidi Mohamed peridotite outcrop area (0.03 km(2)). The Sidi Mohamed peridotite is composed mainly of harzburgites (Mg-rich olivine and orthopyroxene as major minerals). The Ni (2051-2920 ppm), Cr (2368-5514 ppm) and MgO (similar to 28-35 wt.%) whole-rock composition and the relative depletion in Nb make these harzburgites comparable to depleted peridotites related to a subduction zone. We suggest that the Sidi Mohamed ultramafic body was derived directly from the upper mantle and tectonically incorporated into the gneiss units of the Edough metamorphic core complex in a subduction environment. KW - Peridotites KW - upper mantle KW - Edough KW - Algeria Y1 - 2013 U6 - https://doi.org/10.1007/s12040-013-0358-z SN - 0253-4126 SN - 0973-774X VL - 122 IS - 6 SP - 1455 EP - 1465 PB - Indian Academy of Science CY - Bangalore ER -