TY - JOUR A1 - Todt, Helge Tobias A1 - Kniazev, A. Y. A1 - Gvaramadze, V. V. A1 - Hamann, Wolf-Rainer A1 - Buckley, D. A1 - Crause, L. A1 - Crawford, S. M. A1 - Gulbis, A. A. S. A1 - Hettlage, C. A1 - Hooper, E. A1 - Husser, T. -O. A1 - Kotze, P. A1 - Loaring, N. A1 - Nordsieck, K. H. A1 - O'Donoghue, D. A1 - Pickering, T. A1 - Potter, S. A1 - Romero-Colmenero, E. A1 - Vaisanen, P. A1 - Williams, T. A1 - Wolf, M. T1 - Abell 48-a rare WN-type central star of a planetary nebula JF - Monthly notices of the Royal Astronomical Society N2 - A considerable fraction of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient. Almost all of these H-deficient central stars (CSs) display spectra with strong carbon and helium lines. Most of them exhibit emission-line spectra resembling those of massive WC stars. Therefore these stars are classed as CSPNe of spectral type [WC]. Recently, quantitative spectral analysis of two emission-line CSs, PB 8 and IC 4663, revealed that these stars do not belong to the [WC] class. Instead PB 8 has been classified as [WN/WC] type and IC 4663 as [WN] type. In this work we report the spectroscopic identification of another rare [WN] star, the CS of Abell 48. We performed a spectral analysis of Abell 48 with the Potsdam Wolf-Rayet (PoWR) models for expanding atmospheres. We find that the expanding atmosphere of Abell 48 is mainly composed of helium (85 per cent by mass), hydrogen (10 per cent) and nitrogen (5 per cent). The residual hydrogen and the enhanced nitrogen abundance make this object different from the other [WN] star IC 4663. We discuss the possible origin of this atmospheric composition. KW - stars: abundances KW - stars: AGB and post-AGB KW - stars: mass-loss KW - stars: Wolf-Rayet KW - planetary nebulae: general KW - planetary nebulae: individual: PN G029.0+00.4 Y1 - 2013 U6 - https://doi.org/10.1093/mnras/stt056 SN - 0035-8711 SN - 1365-2966 VL - 430 IS - 3 SP - 2302 EP - 2312 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Reindl, Nicole A1 - Rauch, Thomas A1 - Parthasarathy, M. A1 - Werner, K. A1 - Kruk, J. W. A1 - Hamann, Wolf-Rainer A1 - Sander, Andreas Alexander Christoph A1 - Todt, Helge Tobias T1 - The rapid evolution of the exciting star of the Stingray nebula JF - Astronomy and astrophysics : an international weekly journal N2 - Context. SAO 244567, the exciting star of the Stingray nebula, is rapidly evolving. Previous analyses suggested that it has heated up from an effective temperature of about 21 kK in 1971 to over 50 kK in the 1990s. Canonical post-asymptotic giant branch evolution suggests a relatively high mass while previous analyses indicate a low-mass star. Aims. A comprehensive model-atmosphere analysis of UV and optical spectra taken during 1988-2006 should reveal the detailed temporal evolution of its atmospheric parameters and provide explanations for the unusually fast evolution. Methods. Fitting line profiles from static and expanding non-LTE model atmospheres to the observed spectra allowed us to study the temporal change of effective temperature, surface gravity, mass-loss rate, and terminal wind velocity. In addition, we determined the chemical composition of the atmosphere. Results. We find that the central star has steadily increased its effective temperature from 38 kK in 1988 to a peak value of 60 kK in 2002. During the same time, the star was contracting, as concluded from an increase in surface gravity from log g = 4.8 to 6.0 and a drop in luminosity. Simultaneously, the mass-loss rate declined from log(M/M-circle dot yr(-1)) = -9.0 to -11.6 and the terminal wind velocity increased from v(infinity) = 1800 km s(-1) to 2800 km s(-1). Since around 2002, the star stopped heating and has cooled down again to 55 kK by 2006. It has a largely solar surface composition with the exception of slightly subsolar carbon, phosphorus, and sulfur. The results are discussed by considering different evolutionary scenarios. Conclusions. The position of SAO 244567 in the log T-eff-log g plane places the star in the region of sdO stars. By comparison with stellar-evolution calculations, we confirm that SAO 244567 must be a low-mass star (M < 0.55 M-circle dot). However, the slow evolution of the respective stellar evolutionary models is in strong contrast to the observed fast evolution and the young planetary nebula with a kinematical age of only about 1000 years. We speculate that the star could be a late He-shell flash object. Alternatively, it could be the outcome of close-binary evolution. Then SAD 244567 would be a low-mass (0.354 M-circle dot) helium pre-white dwarf after the common-envelope phase, during which the planetary nebula was ejected. KW - stars: abundances KW - stars: evolution KW - stars: AGB and post-AGB KW - stars: individual: SAO 244567 KW - stars: fundamental parameters KW - planetary nebulae: individual: Stingray nebula (Henize 3-1357) Y1 - 2014 U6 - https://doi.org/10.1051/0004-6361/201323189 SN - 0004-6361 SN - 1432-0746 VL - 565 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Reindl, Nicole A1 - Rauch, Thomas A1 - Werner, Klaus A1 - Kruk, J. W. A1 - Todt, Helge Tobias T1 - On helium-dominated stellar evolution: the mysterious role of the O(He)-type stars JF - Astronomy and astrophysics : an international weekly journal N2 - Context. About a quarter of all post-asymptotic giant branch (AGB) stars are hydrogen-deficient. Stellar evolutionary models explain the carbon-dominated H-deficient stars by a (very) late thermal pulse scenario where the hydrogen-rich envelope is mixed with the helium-rich intershell layer. Depending on the particular time at which the final flash occurs, the entire hydrogen envelope may be burned. In contrast, helium-dominated post-AGB stars and their evolution are not yet understood. Aims. A small group of very hot, helium-dominated stars is formed by O(He)-type stars. A precise analysis of their photospheric abundances will establish constraints to their evolution. Methods. We performed a detailed spectral analysis of ultraviolet and optical spectra of four O(He) stars by means of state-of-the-art non-LTE model-atmosphere techniques. Results. We determined effective temperatures, surface gravities, and the abundances of H, He, C, N, O, F, Ne, Si, P, S, Ar, and Fe. By deriving upper limits for the mass-loss rates of the O(He) stars, we found that they do not exhibit enhanced mass-loss. The comparison with evolutionary models shows that the status of the O(He) stars remains uncertain. Their abundances match predictions of a double helium white dwarf (WD) merger scenario, suggesting that they might be the progeny of the compact and of the luminous helium-rich sdO-type stars. The existence of planetary nebulae that do not show helium enrichment around every other O(He) star precludes a merger origin for these stars. These stars must have formed in a different way, for instance via enhanced mass-loss during their post-AGB evolution or a merger within a common-envelope (CE) of a CO-WD and a red giant or AGB star. Conclusions. A helium-dominated stellar evolutionary sequence exists that may be fed by different types of mergers or CE scenarios. It appears likely that all these pass through the O(He) phase just before they become WDs. KW - stars: AGB and post-AGB KW - stars: evolution KW - stars: fundamental parameters KW - stars: abundances Y1 - 2014 U6 - https://doi.org/10.1051/0004-6361/201423498 SN - 0004-6361 SN - 1432-0746 VL - 566 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Rauch, Thomas A1 - Quinet, P. A1 - Hoyer, D. A1 - Werner, K. A1 - Richter, Philipp A1 - Kruk, J. W. A1 - Demleitner, M. T1 - VII. New Kr IV - VII oscillator strengths and an improved spectral analysis of the hot, hydrogen-deficient DO-type white dwarf RE 0503-289 JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - Context. For the spectral analysis of high-resolution and high signal-to-noise (S/N) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. Aims. New Kr IV-VII oscillator strengths for a large number of lines enable us to construct more detailed model atoms for our NLTE model-atmosphere calculations. This enables us to search for additional Kr lines in observed spectra and to improve Kr abundance determinations. Methods. We calculated Kr IV-VII oscillator strengths to consider radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for the analysis of Kr lines that are exhibited in high-resolution and high S/N ultraviolet (UV) observations of the hot white dwarf RE 0503-289. Results. We reanalyzed the effective temperature and surface gravity and determined T-eff = 70 000 +/- 2000 K and log (g/cm s(-2)) = 7.5 +/- 0.1. We newly identified ten Kr V lines and one Kr vi line in the spectrum of RE 0503-289. We measured a Kr abundance of 3.3 +/- 0.3 (logarithmic mass fraction). We discovered that the interstellar absorption toward RE 0503-289 has a multi-velocity structure within a radial-velocity interval of -40 km s(-1) < upsilon(rad) < +18 km s(-1). Conclusions. Reliable measurements and calculations of atomic data are a prerequisite for state-of-the-art NLTE stellar-atmosphere modeling. Observed Kr V-VII line profiles in the UV spectrum of the white dwarf RE 0503-289 were simultaneously well reproduced with our newly calculated oscillator strengths. KW - atomic data KW - line: identification KW - stars: abundances KW - stars: individual: RE 0503-289 KW - virtual observatory tools KW - stars: individual: RE 0457-281 Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201628131 SN - 1432-0746 VL - 590 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Przybilla, Norbert A1 - Fossati, Luca A1 - Hubrig, Swetlana A1 - Nieva, M. -F. A1 - Jaervinen, S. P. A1 - Castro, Norberto A1 - Schoeller, M. A1 - Ilyin, Ilya A1 - Butler, Keith A1 - Schneider, F. R. N. A1 - Oskinova, Lida A1 - Morel, T. A1 - Langer, N. A1 - de Koter, A. T1 - B fields in OB stars (BOB): Detection of a magnetic field in the He-strong star CPD-57 degrees 3509 JF - Organic letters N2 - Methods. Spectropolarimetric observations with FORS2 and HARPSpol are analysed using two independent approaches to quantify the magnetic field strength. A high-S/N FLAMES/GIRAFFE spectrum is analysed using a hybrid non-LTE model atmosphere technique. Comparison with stellar evolution models constrains the fundamental parameters of the star. Results. We obtain a firm detection of a surface averaged longitudinal magnetic field with a maximum amplitude of about 1 kG. Assuming a dipolar configuration of the magnetic field, this implies a dipolar field strength larger than 3.3 kG. Moreover, the large amplitude and fast variation (within about 1 day) of the longitudinal magnetic field implies that CPD-57 degrees 3509 is spinning very fast despite its apparently slow projected rotational velocity. The star should be able to support a centrifugal magnetosphere, yet the spectrum shows no sign of magnetically confined material; in particular, emission in H alpha is not observed. Apparently, the wind is either not strong enough for enough material to accumulate in the magnetosphere to become observable or, alternatively, some leakage process leads to loss of material from the magnetosphere. The quantitative spectroscopic analysis of the star yields an effective temperature and a logarithmic surface gravity of 23 750 +/- 250 K and 4.05 +/- 0.10, respectively, and a surface helium fraction of 0.28 +/- 0.02 by number. The surface abundances of C, N, O, Ne, S, and Ar are compatible with the cosmic abundance standard, whereas Mg, Al, Si, and Fe are depleted by about a factor of 2. This abundance pattern can be understood as the consequence of a fractionated stellar wind. CPD-57 degrees 3509 is one of the most evolved He-strong stars known with an independent age constraint due to its cluster membership. KW - stars: abundances KW - stars: atmospheres KW - stars: evolution KW - stars: magnetic field KW - stars: individual: CPD-57 degrees 3509 KW - stars: massive Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201527646 SN - 1432-0746 VL - 587 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Starkenburg, Else A1 - Martin, Nicolas A1 - Youakim, Kris A1 - Aguado, David S. A1 - Allende Prieto, Carlos A1 - Arentsen, Anke A1 - Bernard, Edouard J. A1 - Bonifacio, Piercarlo A1 - Caffau, Elisabetta A1 - Carlberg, Raymond G. A1 - Cote, Patrick A1 - Fouesneau, Morgan A1 - Francois, Patrick A1 - Franke, Oliver A1 - Gonzalez Hernandez, Jonay I. A1 - Gwyn, Stephen D. J. A1 - Hill, Vanessa A1 - Ibata, Rodrigo A. A1 - Jablonka, Pascale A1 - Longeard, Nicolas A1 - McConnachie, Alan W. A1 - Navarro, Julio F. A1 - Sanchez-Janssen, Ruben A1 - Tolstoy, Eline A1 - Venn, Kim A. T1 - The Pristine survey - I. Mining the Galaxy for the most metal-poor stars JF - Monthly notices of the Royal Astronomical Society N2 - We present the Pristine survey, a new narrow-band photometric survey focused on the metallicity-sensitive Ca H&K lines and conducted in the Northern hemisphere with the wide-field imager MegaCam on the Canada-France-Hawaii Telescope. This paper reviews our overall survey strategy and discusses the data processing and metallicity calibration. Additionally we review the application of these data to the main aims of the survey, which are to gather a large sample of the most metal-poor stars in the Galaxy, to further characterize the faintest Milky Way satellites, and to map the (metal-poor) substructure in the Galactic halo. The current Pristine footprint comprises over 1000 deg(2) in the Galactic halo ranging from b similar to 30 degrees to similar to 78 degrees and covers many known stellar substructures. We demonstrate that, for Sloan Digital Sky Survey (SDSS) stellar objects, we can calibrate the photometry at the 0.02-mag level. The comparison with existing spectroscopic metallicities from SDSS/Sloan Extension for Galactic Understanding and Exploration (SEGUE) and Large Sky Area Multi-Object Fiber Spectroscopic Telescope shows that, when combined with SDSS broad-band g and i photometry, we can use the CaHK photometry to infer photometric metallicities with an accuracy of similar to 0.2 dex from [Fe/H] = -0.5 down to the extremely metal-poor regime ([Fe/H] < -3.0). After the removal of various contaminants, we can efficiently select metal-poor stars and build a very complete sample with high purity. The success rate of uncovering [Fe/H](SEGUE) < -3.0 stars among [Fe/H](Pristine) < -3.0 selected stars is 24 per cent, and 85 per cent of the remaining candidates are still very metal poor ([Fe/H]<-2.0). We further demonstrate that Pristine is well suited to identify the very rare and pristine Galactic stars with [Fe/H] < -4.0, which can teach us valuable lessons about the early Universe. KW - stars: abundances KW - Galaxy: abundances KW - Galaxy: evolution KW - Galaxy: formation KW - Galaxy: halo KW - galaxies: dwarf Y1 - 2017 U6 - https://doi.org/10.1093/mnras/stx1068 SN - 0035-8711 SN - 1365-2966 VL - 471 SP - 2587 EP - 2604 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Reindl, Nicole A1 - Geier, Stephan Alfred A1 - Ostensen, R. H. T1 - Discovery of two bright DO-type white dwarfs JF - Monthly notices of the Royal Astronomical Society N2 - We discovered two bright DO-type white dwarfs, GALEXJ053628.3+544854 (J0536+5448) and GALEXJ231128.0+292935(J2311+2929), which rank among the eight brightest DO-type white dwarfs known. Our non-LTE model atmosphere analysis reveals effective temperatures and surface gravities of T-eff = 80000 +/- 4600K and log g = 8.25 +/- 0.15 for J0536+5448 and T-eff = 69400 +/- 900K and log g = 7.80 +/- 0.06 for J2311+2929. The latter shows a significant amount of carbon in its atmosphere (C = 0.003(-0.002)(+0.005), by mass), while for J0536+5448 we could derive only an upper limit of C < 0.003. Furthermore, we calculated spectroscopic distances for the two stars and found a good agreement with the distances derived from the Gaia parallaxes. KW - stars: abundances KW - stars: atmospheres KW - white dwarfs Y1 - 2018 U6 - https://doi.org/10.1093/mnras/sty1875 SN - 0035-8711 SN - 1365-2966 VL - 480 IS - 1 SP - 1211 EP - 1217 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Reindl, Nicole A1 - Finch, Nicolle L. A1 - Schaffenroth, Veronika A1 - Barstow, Martin A. A1 - Casewell, Sarah L. A1 - Geier, Stephan Alfred A1 - Bertolami Miller, Marcelo Miguel A1 - Taubenberger, Stefan T1 - Revealing the true nature of Hen 2-428 JF - Galaxies N2 - The nucleus of Hen 2-428 is a short orbital period (4.2 h) spectroscopic binary, whose status as potential supernovae type Ia progenitor has raised some controversy in the literature. We present preliminary results of a thorough analysis of this interesting system, which combines quantitative non-local thermodynamic (non-LTE) equilibrium spectral modelling, radial velocity analysis, multi-band light curve fitting, and state-of-the art stellar evolutionary calculations. Importantly, we find that the dynamical system mass that is derived by using all available He II lines does not exceed the Chandrasekhar mass limit. Furthermore, the individual masses of the two central stars are too small to lead to an SN Ia in case of a dynamical explosion during the merger process. KW - binaries: spectroscopic KW - stars: atmospheres KW - stars: abundances KW - supernovae Y1 - 2018 U6 - https://doi.org/10.3390/galaxies6030088 SN - 2075-4434 VL - 6 IS - 3 ER - TY - JOUR A1 - Latour, Marilyn A1 - Dorsch, Matti A1 - Heber, Ulrich T1 - Heavy metal enrichment in the intermediate He-sdOB pulsator Feige 46 JF - Astronomy and astrophysics : an international weekly journal N2 - The intermediate He-enriched hot subdwarf star Feige 46 was recently reported as the second member of the V366 Aqr (or He-sdOBV) pulsating class. Feige 46 is very similar to the prototype of the class, LS IV-14 degrees 116, not only in terms of pulsational properties, but also in terms of atmospheric parameters and kinematic properties. LS IV-14 degrees 116 is additionally characterized by a very peculiar chemical composition, with extreme overabundances of the trans-iron elements Ge, Sr, Y, and Zr. We investigate the possibility that the similarity between the two pulsators extends to their chemical composition. We retrieved archived optical and UV spectroscopic observations of Feige 46 and performed an abundance analysis using model atmospheres and synthetic spectra computed with TLUSTY and SYNSPEC. In total, we derived abundances for 16 elements and provide upper limits for four additional elements. Using absorption lines in the optical spectrum of the star we measure an enrichment of more than 10 000x solar for yttrium and zirconium. The UV spectrum revealed that strontium is equally enriched. Our results confirm that Feige 46 is not only a member of the now growing group of heavy metal subdwarfs, but also has an abundance pattern that is remarkably similar to that of LS IV-14 degrees 116. KW - stars: abundances KW - subdwarfs KW - stars: individual: Feige 46 Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201936247 SN - 1432-0746 VL - 629 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Latour, Marlyn A1 - Husser, Tim Oliver A1 - Giesers, Benjamin David A1 - Kamann, S. A1 - Göttgens, Fabian A1 - Dreizler, Stefan A1 - Brinchmann, Jan A1 - Bastian, Nate A1 - Wendt, Martin A1 - Weilbacher, Peter Michael A1 - Molinski, N. S. T1 - A stellar census in globular clusters with MUSE: multiple populations chemistry in NGC 2808 star star star JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Galactic globular clusters (GCs) are now known to host multiple populations displaying particular abundance variations. The different populations within a GC can be well distinguished following their position in the pseudo two-colors diagrams, also referred to as "chromosome maps". These maps are constructed using optical and near-UV photometry available from the Hubble Space Telescope (HST) UV survey of GCs. However, the chemical tagging of the various populations in the chromosome maps is hampered by the fact that HST photometry and elemental abundances are both only available for a limited number of stars. Aims. The spectra collected as part of the MUSE survey of globular clusters provide a spectroscopic counterpart to the HST photometric catalogs covering the central regions of GCs. In this paper, we use the MUSE spectra of 1115 red giant branch (RGB) stars in NGC 2808 to characterize the abundance variations seen in the multiple populations of this cluster. Methods. We used the chromosome map of NGC 2808 to divide the RGB stars into their respective populations. We then combined the spectra of all stars belonging to a given population, resulting in one high signal-to-noise ratio spectrum representative of each population. Results. Variations in the spectral lines of O, Na, Mg, and Al are clearly detected among four of the populations. In order to quantify these variations, we measured equivalent width differences and created synthetic populations spectra that were used to determine abundance variations with respect to the primordial population of the cluster. Our results are in good agreement with the values expected from previous studies based on high-resolution spectroscopy. We do not see any significant variations in the spectral lines of Ca, K, and Ba. We also do not detect abundance variations among the stars belonging to the primordial population of NGC 2808. Conclusions. We demonstrate that in spite of their low resolution, the MUSE spectra can be used to investigate abundance variations in the context of multiple populations. KW - techniques: imaging spectroscopy KW - stars: abundances KW - globular clusters: individual: NGC 2808 Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201936242 SN - 1432-0746 VL - 631 PB - EDP Sciences CY - Les Ulis ER -