TY - JOUR A1 - Baroni, Gabriele A1 - Drastig, Katrin A1 - Lichtenfeld, Anna-Ulrike A1 - Jost, Leonie A1 - Claas, Peter T1 - Assessment of irrigation scheduling systems in Germany BT - survey of the users and comparative study JF - Irrigation and drainage N2 - In Germany, the irrigation sector accounts for only 1% of water use. In recent years, however, this sector has attracted more attention due to the occurrence of severe drought periods. Irrigation scheduling systems could support adaptation strategies but little is known about current providers, performance and users. In this study we aimed to depict the current situation of the existence and functioning of irrigation scheduling systems available in Germany. Six methods were identified and assessed based on direct interviews with end-users and a comparative analysis. The results showed a positive feedback from the users. However, the recommendations were rarely implemented, while only the seasonal irrigation requirement was considered to support actual water abstraction. These results were corroborated by the comparative analysis. Five of the six irrigation scheduling systems estimated the seasonal irrigation amount consistently, while wider differences were found by looking at the irrigation season and at the number of irrigations. Overall, it is found that irrigation support systems are valuable tools for supporting adaptation strategies to fast changes in agro-environmental conditions. However, specific assessments based on real measurements should be considered in order to improve the performance of the systems and provide more consistent support to end-users. (c) 2019 John Wiley & Sons, Ltd. KW - irrigation KW - modelling systems KW - surveys KW - assessment KW - Germany Y1 - 2019 U6 - https://doi.org/10.1002/ird.2337 SN - 1531-0353 SN - 1531-0361 VL - 68 IS - 3 SP - 520 EP - 530 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Weisshuhn, Peter A1 - Reckling, Moritz A1 - Stachow, Ulrich A1 - Wiggering, Hubert T1 - Supporting Agricultural Ecosystem Services through the Integration of Perennial Polycultures into Crop Rotations JF - Sustainability N2 - This review analyzes the potential role and long-term effects of field perennial polycultures (mixtures) in agricultural systems, with the aim of reducing the trade-offs between provisioning and regulating ecosystem services. First, crop rotations are identified as a suitable tool for the assessment of the long-term effects of perennial polycultures on ecosystem services, which are not visible at the single-crop level. Second, the ability of perennial polycultures to support ecosystem services when used in crop rotations is quantified through eight agricultural ecosystem services. Legume-grass mixtures and wildflower mixtures are used as examples of perennial polycultures, and compared with silage maize as a typical crop for biomass production. Perennial polycultures enhance soil fertility, soil protection, climate regulation, pollination, pest and weed control, and landscape aesthetics compared with maize. They also score lower for biomass production compared with maize, which confirms the trade-off between provisioning and regulating ecosystem services. However, the additional positive factors provided by perennial polycultures, such as reduced costs for mineral fertilizer, pesticides, and soil tillage, and a significant preceding crop effect that increases the yields of subsequent crops, should be taken into account. However, a full assessment of agricultural ecosystem services requires a more holistic analysis that is beyond the capabilities of current frameworks. KW - agroecosystem KW - assessment KW - legume-grass mixture KW - wildflower mixture KW - perennial crop KW - mixed cropping Y1 - 2017 U6 - https://doi.org/10.3390/su9122267 SN - 2071-1050 VL - 9 PB - MDPI CY - Basel ER -