TY - JOUR A1 - Lontsi, Agostiny Marrios A1 - Garcia-Jerez, Antonio A1 - Camilo Molina-Villegas, Juan A1 - Jose Sanchez-Sesma, Francisco A1 - Molkenthin, Christian A1 - Ohrnberger, Matthias A1 - Krüger, Frank A1 - Wang, Rongjiang A1 - Fah, Donat T1 - A generalized theory for full microtremor horizontal-to-vertical [H/V(z,f)] spectral ratio interpretation in offshore and onshore environments JF - Geophysical journal international N2 - Advances in the field of seismic interferometry have provided a basic theoretical interpretation to the full spectrum of the microtremor horizontal-to-vertical spectral ratio [H/V(f)]. The interpretation has been applied to ambient seismic noise data recorded both at the surface and at depth. The new algorithm, based on the diffuse wavefield assumption, has been used in inversion schemes to estimate seismic wave velocity profiles that are useful input information for engineering and exploration seismology both for earthquake hazard estimation and to characterize surficial sediments. However, until now, the developed algorithms are only suitable for on land environments with no offshore consideration. Here, the microtremor H/V(z, f) modelling is extended for applications to marine sedimentary environments for a 1-D layered medium. The layer propagator matrix formulation is used for the computation of the required Green’s functions. Therefore, in the presence of a water layer on top, the propagator matrix for the uppermost layer is defined to account for the properties of the water column. As an application example we analyse eight simple canonical layered earth models. Frequencies ranging from 0.2 to 50 Hz are considered as they cover a broad wavelength interval and aid in practice to investigate subsurface structures in the depth range from a few meters to a few hundreds of meters. Results show a marginal variation of 8 per cent at most for the fundamental frequency when a water layer is present. The water layer leads to variations in H/V peak amplitude of up to 50 per cent atop the solid layers. KW - Numerical modelling KW - Earthquake hazards KW - Seismic interferometry KW - Site effects KW - Theoretical seismology KW - Wave propagation Y1 - 2019 U6 - https://doi.org/10.1093/gji/ggz223 SN - 0956-540X SN - 1365-246X VL - 218 IS - 2 SP - 1276 EP - 1297 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Palo, Mauro A1 - Tilmann, Frederik A1 - Krüger, Frank A1 - Ehlert, Lutz A1 - Lange, Dietrich T1 - High-frequency seismic radiation from Maule earthquake (M-w 8.8, 2010 February 27) inferred from high-resolution backprojection analysis JF - Geophysical journal international N2 - We track a bilateral rupture propagation lasting similar to 160 s, with its dominant branch rupturing northeastwards at about 3 kms(-1). The area of maximum energy emission is offset from the maximum coseismic slip but matches the zone where most plate interface aftershocks occur. Along dip, energy is preferentially released from two disconnected interface belts, and a distinct jump from the shallower belt to the deeper one is visible after about 20 s from the onset. However, both belts keep on being active until the end of the rupture. These belts approximately match the position of the interface aftershocks, which are split into two clusters of events at different depths, thus suggesting the existence of a repeated transition from stick-slip to creeping frictional regime. KW - Earthquake source observations KW - Wave propagation KW - Subduction zone processes Y1 - 2014 U6 - https://doi.org/10.1093/gji/ggu311 SN - 0956-540X SN - 1365-246X VL - 199 IS - 2 SP - 1058 EP - 1077 PB - Oxford Univ. Press CY - Oxford ER -