TY - JOUR A1 - Pollatos, Olga A1 - Mönkemöller, Karla A1 - Groppe, Karoline A1 - Elsner, Birgit T1 - Interoceptive accuracy is associated with benefits in decision making in children JF - Frontiers in psychology N2 - Introduction: Decision making results not only from logical analyses, but seems to be further guided by the ability to perceive somatic information (interoceptive accuracy). Relations between interoceptive accuracy and decision making have been exclusively studied in adults and with regard to complex, uncertain situations (as measured by the Iowa Gambling Task, IGT). Methods: In the present study, 1454 children (6-11 years) were examined at two time points (approximately 1 year apart) using an IGT as well as a delay-of-gratification task for sweets-items and toy-items. Interoceptive accuracy was measured using a child-adapted version of the Heartbeat Perception Task. Results: The present results revealed that children with higher, as compared to lower, interoceptive accuracy showed more advantageous choices in the IGT and delayed more sweets-items, but not toy-items, in a delay-of-gratification task at time point 2 but not at time point 1. However, no longitudinal relation between interoceptive accuracy and decision making 1 year later could be shown. Discussion: Results indicate that interoceptive accuracy relates to decision-making abilities in situations of varying complexity already in middle childhood, and that this link might consolidate across the examined 1-year period. Furthermore, the association of interoceptive accuracy and the delay of sweets-items might have implications for the regulation of body weight at a later age. KW - cardiac perception KW - interoception KW - emotion KW - decision making KW - Iowa gambling task KW - somatic-marker hypothesis KW - childhood development Y1 - 2023 U6 - https://doi.org/10.3389/fpsyg.2022.1070037 SN - 1664-1078 VL - 13 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Pollatos, Olga A1 - Yeldesbay, Azamat A1 - Pikovskij, Arkadij A1 - Rosenblum, Michael T1 - How much time has passed? Ask your heart JF - Frontiers in neurorobotics N2 - Internal signals like one's heartbeats are centrally processed via specific pathways and both their neural representations as well as their conscious perception (interoception) provide key information for many cognitive processes. Recent empirical findings propose that neural processes in the insular cortex, which are related to bodily signals, might constitute a neurophysiological mechanism for the encoding of duration. Nevertheless, the exact nature of such a proposed relationship remains unclear. We aimed to address this question by searching for the effects of cardiac rhythm on time perception by the use of a duration reproduction paradigm. Time intervals used were of 0.5, 2, 3, 7, 10, 14, 25, and 40s length. In a framework of synchronization hypothesis, measures of phase locking between the cardiac cycle and start/stop signals of the reproduction task were calculated to quantify this relationship. The main result is that marginally significant synchronization indices (Sls) between the heart cycle and the time reproduction responses for the time intervals of 2, 3, 10, 14, and 25s length were obtained, while results were not significant for durations of 0.5, 7, and 40s length. On the single participant level, several subjects exhibited some synchrony between the heart cycle and the time reproduction responses, most pronounced for the time interval of 25s (8 out of 23 participants for 20% quantile). Better time reproduction accuracy was not related with larger degree of phase locking, but with greater vagal control of the heart. A higher interoceptive sensitivity (IS) was associated with a higher synchronization index (SI) for the 2s time interval only. We conclude that information obtained from the cardiac cycle is relevant for the encoding and reproduction of time in the time span of 2-25s. Sympathovagal tone as well as interoceptive processes mediate the accuracy of time estimation. KW - time interval reproduction KW - synchronization KW - heart cycle KW - interoception KW - interoceptive sensitivity Y1 - 2014 U6 - https://doi.org/10.3389/fnbot.2014.00015 SN - 1662-5218 VL - 8 SP - 1 EP - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Füstös, Jürgen A1 - Gramann, Klaus A1 - Herbert, Beate M. A1 - Pollatos, Olga T1 - On the embodiment of emotion regulation - interoceptive awareness facilitates reappraisal JF - Frontiers in human neuroscience N2 - The ability to cognitively regulate emotional responses to aversive events is essential for mental and physical health. One prerequisite of successful emotion regulation is the awareness of emotional states, which in turn is associated with the awareness of bodily signals [interoceptive awareness (IA)]. This study investigated the neural dynamics of reappraisal of emotional responses in 28 participants who differed with respect to IA. Electroencephalography was used to characterize the time course of emotion regulation. We found that reappraisal was accompanied by reduced arousal and significant modulation of late neural responses. What is more, higher IA facilitated downregulation of affect and was associated with more pronounced modulation of underlying neural activity. Therefore, we conclude that IA not only advances the consolidation of somatic markers required for guiding individual behaviour but also creates processing advantages in tasks referring to these bodily markers. KW - interoception KW - interoceptive awareness KW - embodied cognition KW - emotion regulation KW - reappraisal KW - evoked potentials Y1 - 2013 U6 - https://doi.org/10.1093/scan/nss089 SN - 1749-5016 SN - 1749-5024 VL - 8 IS - 8 SP - 911 EP - 917 PB - Oxford Univ. Press CY - Oxford ER -