TY - JOUR A1 - Reeve, Holly A. A1 - Nicholson, Jake A1 - Altaf, Farieha A1 - Lonsdale, Thomas H. A1 - Preissler, Janina A1 - Lauterbach, Lars A1 - Lenz, Oliver A1 - Leimkühler, Silke A1 - Hollmann, Frank A1 - Paul, Caroline E. A1 - Vincent, Kylie A. T1 - A hydrogen-driven biocatalytic approach to recycling synthetic analogues of NAD(P)H JF - Chemical communications : ChemComm N2 - We demonstrate a recycling system for synthetic nicotinamide cofactor analogues using a soluble hydrogenase with turnover number of >1000 for reduction of the cofactor analogues by H-2. Coupling this system to an ene reductase, we show quantitative conversion of N-ethylmaleimide to N-ethylsuccinimide. The biocatalyst system retained >50% activity after 7 h. Y1 - 2022 U6 - https://doi.org/10.1039/d2cc02411j SN - 1359-7345 SN - 1364-548X VL - 58 IS - 75 SP - 10540 EP - 10543 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Terao, Mineko A1 - Garattini, Enrico A1 - Romão, Maria João A1 - Leimkühler, Silke T1 - Evolution, expression, and substrate specificities of aldehyde oxidase enzymes in eukaryotes JF - The journal of biological chemistry N2 - Aldehyde oxidases (AOXs) are a small group of enzymes belonging to the larger family of molybdo-flavoenzymes, along with the well-characterized xanthine oxidoreductase. The two major types of reactions that are catalyzed by AOXs are the hydroxylation of heterocycles and the oxidation of aldehydes to their corresponding carboxylic acids. Different animal species have different complements of AOX genes. The two extremes are represented in humans and rodents; whereas the human genome contains a single active gene (AOX1), those of rodents, such as mice, are endowed with four genes (Aox1-4), clustering on the same chromosome, each encoding a functionally distinct AOX enzyme. It still remains enigmatic why some species have numerous AOX enzymes, whereas others harbor only one functional enzyme. At present, little is known about the physiological relevance of AOX enzymes in humans and their additional forms in other mammals. These enzymes are expressed in the liver and play an important role in the metabolisms of drugs and other xenobiotics. In this review, we discuss the expression, tissue-specific roles, and substrate specificities of the different mammalian AOX enzymes and highlight insights into their physiological roles. KW - metalloenzyme KW - molybdenum KW - mouse KW - drug metabolism KW - flavoprotein KW - xenobiotic KW - oxidase KW - oxygen radicals KW - iron-sulfur protein KW - aldehyde oxidase (AOX) KW - enzyme evolution KW - metal-containing enzyme KW - molybdenum cofactor (Moco) KW - molybdo-flavoenzyme KW - 2Fe-2S cluster KW - flavin adenine dinucleotide (FAD) Y1 - 2020 U6 - https://doi.org/10.1074/jbc.REV119.007741 SN - 0021-9258 SN - 1083-351X VL - 295 IS - 16 SP - 5377 EP - 5389 PB - American Society for Biochemistry and Molecular Biology CY - Rockville ER - TY - JOUR A1 - Yan, Jiawei A1 - Frøkjær, Emil Egede A1 - Engelbrekt, Christian A1 - Leimkühler, Silke A1 - Ulstrup, Jens A1 - Wollenberger, Ulla A1 - Xiao, Xinxin A1 - Zhang, Jingdong T1 - Voltammetry and single-molecule in situ scanning tunnelling microscopy of the redox metalloenzyme human sulfite oxidase JF - ChemElectroChem N2 - Human sulfite oxidase (hSO) is a homodimeric two-domain enzyme central in the biological sulfur cycle. A pyranopterin molybdenum cofactor (Moco) is the catalytic site and a heme b(5) group located in the N-terminal domain. The two domains are connected by a flexible linker region. Electrons produced at the Moco in sulfite oxidation, are relayed via heme b(5) to electron acceptors or an electrode surface. Inter-domain conformational changes between an open and a closed enzyme conformation, allowing "gated" electron transfer has been suggested. We first recorded cyclic voltammetry (CV) of hSO on single-crystal Au(111)-electrode surfaces modified by self-assembled monolayers (SAMs) both of a short rigid thiol, cysteamine and of a longer structurally flexible thiol, omega-amino-octanethiol (AOT). hSO on cysteamine SAMs displays a well-defined pair of voltammetric peaks around -0.207 V vs. SCE in the absence of sulfite substrate, but no electrocatalysis. hSO on AOT SAMs displays well-defined electrocatalysis, but only "fair" quality voltammetry in the absence of sulfite. We recorded next in situ scanning tunnelling spectroscopy (STS) of hSO on AOT modified Au(111)-electrodes, disclosing, a 2-5 % surface coverage of strong molecular scale contrasts, assigned to single hSO molecules, notably with no contrast difference in the absence and presence of sulfite. In situ STS corroborated this observation with a sigmoidal tunnelling current/overpotential correlation. KW - cyclic voltammetry KW - human sulfite oxidase KW - in  situ scanning KW - tunnelling spectroscopy KW - self-assembled molecular monolayers KW - single-crystal gold electrodes Y1 - 2021 U6 - https://doi.org/10.1002/celc.202001258 SN - 2196-0216 VL - 8 IS - 1 SP - 164 EP - 171 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Tadjoung Waffo, Armel Franklin A1 - Mitrova, Biljana A1 - Tiedemann, Kim A1 - Iobbi-Nivol, Chantal A1 - Leimkühler, Silke A1 - Wollenberger, Ulla T1 - Electrochemical trimethylamine n-oxide biosensor with enzyme-based oxygen-scavenging membrane for long-term operation under ambient air JF - Biosensors : open access journal N2 - An amperometric trimethylamine N-oxide (TMAO) biosensor is reported, where TMAO reductase (TorA) and glucose oxidase (GOD) and catalase (Cat) were immobilized on the electrode surface, enabling measurements of mediated enzymatic TMAO reduction at low potential under ambient air conditions. The oxygen anti-interference membrane composed of GOD, Cat and polyvinyl alcohol (PVA) hydrogel, together with glucose concentration, was optimized until the O-2 reduction current of a Clark-type electrode was completely suppressed for at least 3 h. For the preparation of the TMAO biosensor, Escherichia coli TorA was purified under anaerobic conditions and immobilized on the surface of a carbon electrode and covered by the optimized O-2 scavenging membrane. The TMAO sensor operates at a potential of -0.8 V vs. Ag/AgCl (1 M KCl), where the reduction of methylviologen (MV) is recorded. The sensor signal depends linearly on TMAO concentrations between 2 mu M and 15 mM, with a sensitivity of 2.75 +/- 1.7 mu A/mM. The developed biosensor is characterized by a response time of about 33 s and an operational stability over 3 weeks. Furthermore, measurements of TMAO concentration were performed in 10% human serum, where the lowest detectable concentration is of 10 mu M TMAO. KW - trimethylamine N-oxide KW - biosensor KW - TMAO-reductase KW - oxygen scavenger KW - immobilized enzyme KW - multienzyme electrode KW - viologen Y1 - 2021 U6 - https://doi.org/10.3390/bios11040098 SN - 2079-6374 VL - 11 IS - 4 PB - MDPI CY - Basel ER - TY - JOUR A1 - Laun, Konstantin A1 - Duffus, Benjamin R. A1 - Wahlefeld, Stefan A1 - Katz, Sagie A1 - Belger, Dennis Heinz A1 - Hildebrandt, Peter A1 - Mroginski, Maria Andrea A1 - Leimkühler, Silke A1 - Zebger, Ingo T1 - Infrared spectroscopy flucidates the inhibitor binding sites in a metal-dependent formate dehydrogenase JF - Chemistry - a European journal N2 - Biological carbon dioxide (CO2) reduction is an important step by which organisms form valuable energy-richer molecules required for further metabolic processes. The Mo-dependent formate dehydrogenase (FDH) from Rhodobacter capsulatus catalyzes reversible formate oxidation to CO2 at a bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor. To elucidate potential substrate binding sites relevant for the mechanism, we studied herein the interaction with the inhibitory molecules azide and cyanate, which are isoelectronic to CO2 and charged as formate. We employed infrared (IR) spectroscopy in combination with density functional theory (DFT) and inhibition kinetics. One distinct inhibitory molecule was found to bind to either a non-competitive or a competitive binding site in the secondary coordination sphere of the active site. Site-directed mutagenesis of key amino acid residues in the vicinity of the bis-MGD cofactor revealed changes in both non-competitive and competitive binding, whereby the inhibitor is in case of the latter interaction presumably bound between the cofactor and the adjacent Arg587. KW - CO2 reduction KW - DFT KW - formate oxidation KW - inhibition kinetics KW - IR KW - spectroscopy KW - molybdoenzyme Y1 - 2022 U6 - https://doi.org/10.1002/chem.202201091 SN - 0947-6539 SN - 1521-3765 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Stripp, Sven T. A1 - Duffus, Benjamin R. A1 - Fourmond, Vincent A1 - Leger, Christophe A1 - Leimkühler, Silke A1 - Hirota, Shun A1 - Hu, Yilin A1 - Jasniewski, Andrew A1 - Ogata, Hideaki A1 - Ribbe, Markus W. T1 - Second and outer coordination sphere effects in nitrogenase, hydrogenase, formate dehydrogenase, and CO dehydrogenase JF - Chemical reviews : CR N2 - Gases like H-2, N-2, CO2, and CO are increasingly recognized as critical feedstock in "green" energy conversion and as sources of nitrogen and carbon for the agricultural and chemical sectors. However, the industrial transformation of N-2, CO2, and CO and the production of H-2 require significant energy input, which renders processes like steam reforming and the Haber-Bosch reaction economically and environmentally unviable. Nature, on the other hand, performs similar tasks efficiently at ambient temperature and pressure, exploiting gas-processing metalloenzymes (GPMs) that bind low-valent metal cofactors based on iron, nickel, molybdenum, tungsten, and sulfur. Such systems are studied to understand the biocatalytic principles of gas conversion including N-2 fixation by nitrogenase and H-2 production by hydrogenase as well as CO2 and CO conversion by formate dehydrogenase, carbon monoxide dehydrogenase, and nitrogenase. In this review, we emphasize the importance of the cofactor/protein interface, discussing how second and outer coordination sphere effects determine, modulate, and optimize the catalytic activity of GPMs. These may comprise ionic interactions in the second coordination sphere that shape the electron density distribution across the cofactor, hydrogen bonding changes, and allosteric effects. In the outer coordination sphere, proton transfer and electron transfer are discussed, alongside the role of hydrophobic substrate channels and protein structural changes. Combining the information gained from structural biology, enzyme kinetics, and various spectroscopic techniques, we aim toward a comprehensive understanding of catalysis beyond the first coordination sphere. Y1 - 2022 U6 - https://doi.org/10.1021/acs.chemrev.1c00914 SN - 0009-2665 SN - 1520-6890 VL - 122 IS - 14 SP - 11900 EP - 11973 PB - American Chemical Society CY - Washington, DC ER - TY - JOUR A1 - Fujihara, Kenji M. A1 - Zhang, Bonnie Z. A1 - Jackson, Thomas D. A1 - Ogunkola, Moses A1 - Nijagal, Brunda A1 - Milne, Julia V. A1 - Sallman, David A. A1 - Ang, Ching-Seng A1 - Nikolic, Iva A1 - Kearney, Conor J. A1 - Hogg, Simon J. A1 - Cabalag, Carlos S. A1 - Sutton, Vivien R. A1 - Watt, Sally A1 - Fujihara, Asuka T. A1 - Trapani, Joseph A. A1 - Simpson, Kaylene J. A1 - Stojanovski, Diana A1 - Leimkühler, Silke A1 - Haupt, Sue A1 - Phillips, Wayne A. A1 - Clemons, Nicholas J. T1 - Eprenetapopt triggers ferroptosis, inhibits NFS1 cysteine desulfurase, and synergizes with serine and glycine dietary restriction JF - Science Advances N2 - The mechanism of action of eprenetapopt (APR-246, PRIMA-1MET) as an anticancer agent remains unresolved, al-though the clinical development of eprenetapopt focuses on its reported mechanism of action as a mutant-p53 reactivator. Using unbiased approaches, this study demonstrates that eprenetapopt depletes cellular antioxidant glutathione levels by increasing its turnover, triggering a nonapoptotic, iron-dependent form of cell death known as ferroptosis. Deficiency in genes responsible for supplying cancer cells with the substrates for de novo glutathione synthesis (SLC7A11, SHMT2, and MTHFD1L), as well as the enzymes required to synthesize glutathione (GCLC and GCLM), augments the activity of eprenetapopt. Eprenetapopt also inhibits iron-sulfur cluster biogenesis by limit-ing the cysteine desulfurase activity of NFS1, which potentiates ferroptosis and may restrict cellular proliferation. The combination of eprenetapopt with dietary serine and glycine restriction synergizes to inhibit esophageal xenograft tumor growth. These findings reframe the canonical view of eprenetapopt from a mutant-p53 reactivator to a ferroptosis inducer. Y1 - 2022 U6 - https://doi.org/10.1126/sciadv.abm9427 SN - 2375-2548 VL - 8 IS - 37 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - De Sousa Mota, Cristiano A1 - Diniz, Ana A1 - Coelho, Catarina A1 - Santos-Silva, Teresa A1 - Esmaeeli Moghaddam Tabalvandani, Mariam A1 - Leimkühler, Silke A1 - Cabrita, Eurico J. A1 - Marcelo, Filipa A1 - Romão, Maria João T1 - Interrogating the inhibition mechanisms of human aldehyde oxidase by X-ray crystallography and NMR spectroscopy BT - the raloxifene case JF - Journal of medicinal chemistry / American Chemical Society N2 - Human aldehyde oxidase (hAOX1) is mainly present in the liver and has an emerging role in drug metabolism, since it accepts a wide range of molecules as substrates and inhibitors. Herein, we employed an integrative approach by combining NMR, X-ray crystallography, and enzyme inhibition kinetics to understand the inhibition modes of three hAOX1 inhibitors-thioridazine, benzamidine, and raloxifene. These integrative data indicate that thioridazine is a noncompetitive inhibitor, while benzamidine presents a mixed type of inhibition. Additionally, we describe the first crystal structure of hAOX1 in complex with raloxifene. Raloxifene binds tightly at the entrance of the substrate tunnel, stabilizing the flexible entrance gates and elucidating an unusual substrate-dependent mechanism of inhibition with potential impact on drug-drug interactions. This study can be considered as a proof-of-concept for an efficient experimental screening of prospective substrates and inhibitors of hAOX1 relevant in drug discovery. Y1 - 2021 U6 - https://doi.org/10.1021/acs.jmedchem.1c01125 SN - 0022-2623 SN - 1520-4804 VL - 64 IS - 17 SP - 13025 EP - 13037 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Leimkühler, Silke T1 - Transition metals in catalysis BT - the functional relationship of Fe-S clusters and molybdenum or tungsten cofactor-containing enzyme systems JF - Inorganics : open access journal Y1 - 2021 U6 - https://doi.org/10.3390/inorganics9010006 SN - 2304-6740 VL - 9 IS - 1 PB - MDPI CY - Basel ER - TY - JOUR A1 - Duffus, Benjamin R. A1 - Schrapers, Peer A1 - Schuth, Nils A1 - Mebs, Stefan A1 - Dau, Holger A1 - Leimkühler, Silke A1 - Haumann, Michael T1 - Anion binding and oxidative modification at the molybdenum cofactor of formate dehydrogenase from Rhodobacter capsulatus studied by X-ray absorption spectroscopy JF - Inorganic chemistry N2 - Formate dehydrogenase (FDH) enzymes are versatile catalysts for CO2 conversion. The FDH from Rhodobacter capsulatus contains a molybdenum cofactor with the dithiolene functions of two pyranopterin guanine dinucleotide molecules, a conserved cysteine, and a sulfido group bound at Mo(VI). In this study, we focused on metal oxidation state and coordination changes in response to exposure to O-2, inhibitory anions, and redox agents using X-ray absorption spectroscopy (XAS) at the Mo K-edge. Differences in the oxidative modification of the bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor relative to samples prepared aerobically without inhibitor, such as variations in the relative numbers of sulfido (Mo=S) and oxo (Mo=O) bonds, were observed in the presence of azide (N-3(-)) or cyanate (OCN-). Azide provided best protection against O-2, resulting in a quantitatively sulfurated cofactor with a displaced cysteine ligand and optimized formate oxidation activity. Replacement of the cysteine ligand by a formate (HCO2-) ligand at the molybdenum in active enzyme is compatible with our XAS data. Cyanide (CN-) inactivated the enzyme by replacing the sulfido ligand at Mo(VI) with an oxo ligand. Evidence that the sulfido group may become protonated upon molybdenum reduction was obtained. Our results emphasize the role of coordination flexibility at the molybdenum center during inhibitory and catalytic processes of FDH enzymes. Y1 - 2020 U6 - https://doi.org/10.1021/acs.inorgchem.9b01613 SN - 0020-1669 SN - 1520-510X VL - 59 IS - 1 SP - 214 EP - 225 PB - American Chemical Society CY - Washington, DC ER -