TY - JOUR A1 - Stojanovic, Milovan A1 - Markovic, Rade A1 - Kleinpeter, Erich A1 - Baranac-Stojanovic, Marija T1 - Synthesis of thiazolidine-fused heterocycles via exo-mode cyclizations of vinylogous N-acyliminium ions JF - Organic & biomolecular chemistry : an international journal of synthetic, physical and biomolecular organic chemistry N2 - Syntheses of thiazolidine-fused heterocycles via exo-mode cyclizations of vinylogous N-acyliminium ions incorporating heteroatom-based nucleophiles have been examined and discussed. The formation of (5,6)-membered systems was feasible with all nucleophiles tried (O, S and N), while the closing of the five-membered ring was restricted to O- and S-nucleophiles. The closure of a four-membered ring failed. Instead, the bicyclic (5,6)-membered acetal derivative and the tricyclic system with an eight-membered central ring were obtained from the substrates containing O and S nucleophilic moieties, respectively. The reaction outcome and stereochemistry are rationalized using quantum chemical calculations at B3LYP/6-31G(d) level. The exclusive cis-stereoselectivity in the formation of (5,6)- and (5,5)-membered systems results from thermodynamic control, whereas the formation of the eight-membered ring was kinetically controlled. Y1 - 2012 U6 - https://doi.org/10.1039/c1ob06451g SN - 1477-0520 VL - 10 IS - 3 SP - 575 EP - 589 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Shainyan, Bagrat A. A1 - Suslova, Elena N. A1 - Kleinpeter, Erich T1 - Conformational analysis of 4,4-dimethyl-1-(trifluoromethylsulfonyl)-1,4-azasilinane and 2,2,6,6-tetramethyl-4- (trifluoromethylsulfonyl)-1,4,2,6-oxazadisilinane N2 - 4,4-Dimethyl-1-(trifluoromethylsulfonyl)-1,4-azasilinane 1 and 2,2,6,6-tetramethyl-4-(trifluoromethylsulfonyl)- 1,4,2,6-oxazadisilinane 2 were studied by variable temperature dynamic 1H, 13C, 19F NMR spectroscopy and theoretical calculations at the DFT (density functional theory) and MP2 (Moller-Plesset 2) levels of theory. Both kinetic (barriers to ring inversion) and thermodynamic data (frozen conformational equilibria) could be obtained for the two compounds. The computations revealed two minima on the potential energy surface for molecules 1 and 2 corresponding to the rotamers with the CF3SO2 group directed inward and outward the ring, the latter being 0.20.4 kcal/mol (for 1) and 1.1 kcal/mol (for 2) more stable than the former. The vibrational calculations at the DFT and MP2 levels of theory give the values of the free energy difference Delta G degrees for the 'inward' reversible arrow 'outward' equilibrium consistent with those determined from the experimentally measured ratio of the rotamers. The structure of crystalline compound 2 was ascertained by X-ray diffraction analysis. Y1 - 2012 ER - TY - JOUR A1 - Shainyan, Bagrat A. A1 - Suslova, Elena N. A1 - Kleinpeter, Erich T1 - Conformational analysis of 4,4-dimethyl-1-(trifluoromethylsulfonyl)-1,4-azasilinane and 2,2,6,6-tetramethyl-4-(trifluoromethylsulfonyl)-1,4,2,6-oxazadisilinane JF - Journal of physical organic chemistry N2 - 4,4-Dimethyl-1-(trifluoromethylsulfonyl)-1,4-azasilinane 1 and 2,2,6,6-tetramethyl-4-(trifluoromethylsulfonyl)-1,4,2,6-oxazadisilinane 2 were studied by variable temperature dynamic 1H, 13C, 19F NMR spectroscopy and theoretical calculations at the DFT (density functional theory) and MP2 (Moller-Plesset 2) levels of theory. Both kinetic (barriers to ring inversion) and thermodynamic data (frozen conformational equilibria) could be obtained for the two compounds. The computations revealed two minima on the potential energy surface for molecules 1 and 2 corresponding to the rotamers with the CF3SO2 group directed inward and outward the ring, the latter being 0.20.4 kcal/mol (for 1) and 1.1 kcal/mol (for 2) more stable than the former. The vibrational calculations at the DFT and MP2 levels of theory give the values of the free energy difference Delta G degrees for the 'inward' reversible arrow 'outward' equilibrium consistent with those determined from the experimentally measured ratio of the rotamers. The structure of crystalline compound 2 was ascertained by X-ray diffraction analysis. KW - conformational analysis KW - dynamic NMR KW - quantum chemical calculations KW - 2 KW - 6-disilamorpholines KW - 4-silapiperidines Y1 - 2012 U6 - https://doi.org/10.1002/poc.1882 SN - 0894-3230 VL - 25 IS - 1 SP - 83 EP - 90 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Shainyan, Bagrat A. A1 - Kleinpeter, Erich T1 - Conformational preferences of Si-Ph,H and Si-Ph,Me silacyclohexanes and 1,3-thiasilacyclohexanes : Additivity of conformational energies in 1,1-disubstituted heterocyclohexanes N2 - The conformational equilibria of 1-phenyl-1-silacyclohexane 1, 3-phenyl-1,3-thiasilacyclohexane 2, 1-methyl-1- phenyl-1-silacyclohexane 3, and 3-methyl-3-phenyl-1,3-thiasilacyclohexane 4 have been studied for the first time by low temperature C-13 NMR spectroscopy at 103 K. Predominance of the equatorial conformer of compound 1 (Ph-eq/Ph-ax=78%:22%) is much less than in its carbon analog, phenylcyclohexane (nearly 100% of Ph-eq). And in contrast to 1-methyl-1- phenylcyclohexane, the conformers with the equatorial Ph group are predominant for compounds 3 and 4: at 103 K, Ph-eq/Ph- ax ratios are 63%:37% (3) and 68%:32% (4). As the Si-C bonds are elongated with respect to C-C bonds, the barriers to ring inversion are only between 5.2-6.0 (ax -> eq) and 5.4-6.0 (eq -> ax) kcal mol(-1). Parallel calculations at the DFT and MP2 level of theory (as well as the G2 calculations for compound 1) show qualitative agreement with the experiment. The additivity/nonadditivity of conformational energies of substituents on cyclohexane and silacyclohexane derivatives is analyzed. The geminally disubstituted cyclohexanes containing a phenyl group show large deviations from additivity, whereas in 1-methyl-1-phenyl-1-silacyclohexane and 3-methyl-3-phenyl-1,3-thiasilacyclohexane the effects of the methyl and phenyl groups are almost additive. The reasons for the different conformational preferences in carbocyclic and heterocyclic compounds are analyzed using the homodesmotic reactions approach. Y1 - 2012 UR - http://www.sciencedirect.com/science/article/pii/S0040402011016620 (25.11.2013) SN - 0040-4020 ER - TY - JOUR A1 - Shainyan, Bagrat A. A1 - Kleinpeter, Erich T1 - Conformational preferences of Si-Ph,H and Si-Ph,Me silacyclohexanes and 1,3-thiasilacyclohexanes. Additivity of conformational energies in 1,1-disubstituted heterocyclohexanes JF - Tetrahedron N2 - The conformational equilibria of 1-phenyl-1-silacyclohexane 1, 3-phenyl-1,3-thiasilacyclohexane 2, 1-methyl-1-phenyl-1-silacyclohexane 3, and 3-methyl-3-phenyl-1,3-thiasilacyclohexane 4 have been studied for the first time by low temperature C-13 NMR spectroscopy at 103 K. Predominance of the equatorial conformer of compound 1 (Ph-eq/Ph-ax=78%:22%) is much less than in its carbon analog, phenylcyclohexane (nearly 100% of Ph-eq). And in contrast to 1-methyl-1-phenylcyclohexane, the conformers with the equatorial Ph group are predominant for compounds 3 and 4: at 103 K, Ph-eq/Ph-ax ratios are 63%:37% (3) and 68%:32% (4). As the Si-C bonds are elongated with respect to C-C bonds, the barriers to ring inversion are only between 5.2-6.0 (ax -> eq) and 5.4-6.0 (eq -> ax) kcal mol(-1). Parallel calculations at the DFT and MP2 level of theory (as well as the G2 calculations for compound 1) show qualitative agreement with the experiment. The additivity/nonadditivity of conformational energies of substituents on cyclohexane and silacyclohexane derivatives is analyzed. The geminally disubstituted cyclohexanes containing a phenyl group show large deviations from additivity, whereas in 1-methyl-1-phenyl-1-silacyclohexane and 3-methyl-3-phenyl-1,3-thiasilacyclohexane the effects of the methyl and phenyl groups are almost additive. The reasons for the different conformational preferences in carbocyclic and heterocyclic compounds are analyzed using the homodesmotic reactions approach. KW - Conformational analysis KW - Heterocycles KW - Dynamic NMR KW - Theoretical calculations KW - Additivity of conformational energies Y1 - 2012 U6 - https://doi.org/10.1016/j.tet.2011.10.082 SN - 0040-4020 VL - 68 IS - 1 SP - 114 EP - 125 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Shainyan, Bagrat A. A1 - Kirpichenko, Svetlana V. A1 - Kleinpeter, Erich T1 - Synthesis and conformational properties of 1,3-dimethyl-3-phenyl-1,3-azasilinane low temperature dynamic NMR and computational study JF - Arkivoc : free online journal of organic chemistry N2 - 1,3-Dimethyl-3-phenyl-1,3-azasilinane was synthesized and its conformational behavior was studied by the low temperature NMR spectroscopy and quantum chemical calculations. The compound was shown to exist as an equilibrium mixture of the PhaxMeeq and PheqMeax chair conformers with the N-methyl substituent in equatorial position. The barrier to ring inversion was also determined. KW - 1,3-Dimethyl-3-phenyl-1,3-azasilinane KW - conformational analysis KW - low temperature NMR spectroscopy KW - quantum chemical calculations Y1 - 2012 SN - 1551-7004 IS - 24 SP - 175 EP - 185 PB - ARKAT CY - Gainesville ER - TY - JOUR A1 - Shainyan, Bagrat A. A1 - Kirpichenko, Svetlana V. A1 - Kleinpeter, Erich T1 - Synthesis and conformational analysis of 1,3-azasilinanes JF - Tetrahedron N2 - 1-Isopropyl-3-methyl-3-phenyl-1,3-azasilinane 1 and 1-isopropyl-3,3-dimethyl-1,3-azasilinane 2 were synthesized and a detailed analysis of their NMR spectra, conformational equilibria and ring inversion processes is presented. Low temperature H-1/C-13 NMR spectroscopy, iteration of the H-1 NMR spectra and quantum chemical calculations showed slight predominance of the PheqMeax over the PhaxMeeq conformer of 1 at low temperature. The barrier for the chair to chair interconversion of both compounds was measured to be 8.25 kcal/mol. KW - 1,3-Azasilinanes KW - Conformational analysis KW - Dynamic NMR spectroscopy KW - Quantum chemical calculations KW - Ring current effect Y1 - 2012 U6 - https://doi.org/10.1016/j.tet.2012.05.106 SN - 0040-4020 VL - 68 IS - 36 SP - 7494 EP - 7501 PB - Elsevier CY - Oxford ER - TY - GEN A1 - Pihlaja, Kalevi A1 - Kleinpeter, Erich T1 - Professor Ferenc Fulop a tribute T2 - Arkivoc : free online journal of organic chemistry Y1 - 2012 SN - 1551-7004 SP - 1 EP - 5 PB - ARKAT CY - Gainesville ER - TY - JOUR A1 - Neuvonen, Kari A1 - Neuvonen, Helmi A1 - Koch, Andreas A1 - Kleinpeter, Erich T1 - Taft equation in the light of NBO computations introduction of a novel polar computational substituent constant scale sigma(q)* for alkyl groups JF - Computational and theoretical chemistry N2 - The validity of the Taft equation: log(k(R)/k(CH3)) = rho*sigma* + delta E-S was studied with the aid of NBO computational results concerning cyclohexyl esters RCOOC6H11 [R = Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, sec-Butyl, tert-Butyl, Neopentyl, CH(CH2CH3)(2), CH(CH3)C(CH3)(3), C(CH3)(2)CH2CH3, C(CH3)(2)C(CH3)(3), CH(CH3)(Np), CH(iPr)(tBu), C(Me)(Et)(iPr), C(Et)(2)(tBu) or C(Et)(iPr)(tBu)]. It was proved that the sigma*(alkyl) value is a composite substitutent constant including the polar and steric contributions. A novel computational sigma(q)* substituent constant scale is presented based on the NBO atomic charges of the alpha-carbon and the computational total steric exchange energies E(ster) of the cyclohexyl esters specified above. The method used offers a useful way to calculate sigma*(alkyl) values for alkyl groups for which experimental Taft's polar sigma* parameters are not available. KW - NBO analysis KW - Taft equation KW - Polar substituent constant KW - Steric effect Y1 - 2012 U6 - https://doi.org/10.1016/j.comptc.2011.11.044 SN - 2210-271X VL - 981 IS - 2 SP - 52 EP - 58 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Modarresi-Alam, Ali Reza A1 - Inaloo, Iman Dindarloo A1 - Kleinpeter, Erich T1 - Synthesis of primary thiocarbamates by silica sulfuric acid as effective reagent under solid-state and solution conditions JF - Journal of molecular structure N2 - A simple and efficient method for the conversion of alcohols and phenols to primary O-thiocarbamates and S-thiocarbamates in the absence of solvent (solvent-free condition) using silica sulfuric acid (equivalent to SiO2-OSO3H) as a solid acid is described. The products are easily distinguished by IR, NMR and X-ray data. X-ray data of the compounds reveal a planar trigonal orientation of the NH2 nitrogen atom with the partial C,N double-bond character and the C=S or C=O groups in synperiplanar position with C-aryl-O and C-alkyl-S moieties, respectively. Moreover, the -O-CS-NH2 group which is perpendicular to the plane of the benzene ring in 1c and the central thiocarbamate -S-CO-NH2 group in 2b are essentially planar. KW - Solvent-free KW - N-unsubstituted(primary)O-thiocarbamates KW - N-unsubstituted (primary)S-thiocarbamates KW - Isothiocyanic acid KW - Solid acid KW - Silica sulfuric acid Y1 - 2012 U6 - https://doi.org/10.1016/j.molstruc.2012.05.033 SN - 0022-2860 VL - 1024 IS - 9 SP - 156 EP - 162 PB - Elsevier CY - Amsterdam ER -