TY - JOUR A1 - Islam, Khan M. Shaiful A1 - Schaeublin, H. A1 - Wenk, C. A1 - Wanner, Michael A1 - Liesegang, Annette T1 - Effect of dietary citric acid on the performance and mineral metabolism of broiler JF - Journal of animal physiology and animal nutrition N2 - The objective of this study was to investigate the effect of dietary citric acid (CA) on the performance and mineral metabolism of broiler chicks. A total of 1720 Ross PM3 broiler chicks (days old) were randomly assigned to four groups (430 in each) and reared for a period of 35 days. The diets of groups 1, 2, 3 and 4 were supplemented with 0%, 0.25%, 0.75% or 1.25% CA by weight respectively. Feed and faeces samples were collected weekly and analysed for acid insoluble ash, calcium (Ca), phosphorus (P) and magnesium (Mg). The pH was measured in feed and faeces. At the age of 28 days, 10 birds from each group were slaughtered; tibiae were collected from each bird for the determination of bone mineral density, total ash, Ca, P, Mg and bone-breaking strength, and blood was collected for the measurement of osteocalcin, serum CrossLaps (R), Ca, P, Mg and 1,25(OH)(2)Vit-D in serum. After finishing the trial on day 37, all chicks were slaughtered by using the approved procedure. Birds that were fed CA diets were heavier (average body weights of 2030, 2079 and 2086 g in the 0.25%, 0.75% and 1.25% CA groups, respectively, relative to the control birds (1986 g). Feed conversion efficiency (weight gain in g per kg of feed intake) was also higher in birds of the CA-fed groups (582, 595 and 587 g/kg feed intake for 0.25%, 0.75% and 1.25% CA respectively), relative to the control birds (565 g/kg feed intake). The digestibility of Ca, P and Mg increased in the CA-fed groups, especially for the diets supplemented with 0.25% and 0.75% CA. Support for finding was also indicated in the results of the analysis of the tibia. At slaughter, the birds had higher carcass weights and higher graded carcasses in the groups that were fed the CA diets. The estimated profit margin was highest for birds fed the diet containing 0.25% CA. Birds of the 0.75% CA group were found to have the second highest estimated profit margin. Addition of CA up to a level of 1.25% of the diet increased performance, feed conversion efficiency, carcass weight and carcass quality, but only in numerical terms. The addition of CA up to 0.75% significantly increased the digestibility of macro minerals, bone ash content, bone mineral density and bone strength of the broiler chicks. It may, therefore, be concluded that the addition of 0.75% CA in a standard diet is suitable for growth, carcass traits, macromineral digestibility and bone mineral density of broiler chicks. KW - broiler chicks KW - dietary citric acid KW - calcium KW - phosphorus KW - metabolism KW - performance Y1 - 2012 U6 - https://doi.org/10.1111/j.1439-0396.2011.01225.x SN - 0931-2439 VL - 96 IS - 5 SP - 808 EP - 817 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Haase, Andrea A1 - Rott, Stephanie A1 - Mantion, Alexandre A1 - Graf, Philipp A1 - Plendl, Johanna A1 - Thünemann, Andreas F. A1 - Meier, Wolfgang P. A1 - Taubert, Andreas A1 - Luch, Andreas A1 - Reiser, Georg T1 - Effects of silver nanoparticles on primary mixed neural cell cultures: Uptake, oxidative stress and acute calcium responses JF - Toxicological sciences N2 - In the body, nanoparticles can be systemically distributed and then may affect secondary target organs, such as the central nervous system (CNS). Putative adverse effects on the CNS are rarely investigated to date. Here, we used a mixed primary cell model consisting mainly of neurons and astrocytes and a minor proportion of oligodendrocytes to analyze the effects of well-characterized 20 and 40 nm silver nanoparticles (SNP). Similar gold nanoparticles served as control and proved inert for all endpoints tested. SNP induced a strong size-dependent cytotoxicity. Additionally, in the low concentration range (up to 10 mu g/ml of SNP), the further differentiated cultures were more sensitive to SNP treatment. For detailed studies, we used low/medium dose concentrations (up to 20 mu g/ml) and found strong oxidative stress responses. Reactive oxygen species (ROS) were detected along with the formation of protein carbonyls and the induction of heme oxygenase-1. We observed an acute calcium response, which clearly preceded oxidative stress responses. ROS formation was reduced by antioxidants, whereas the calcium response could not be alleviated by antioxidants. Finally, we looked into the responses of neurons and astrocytes separately. Astrocytes were much more vulnerable to SNP treatment compared with neurons. Consistently, SNP were mainly taken up by astrocytes and not by neurons. Immunofluorescence studies of mixed cell cultures indicated stronger effects on astrocyte morphology. Altogether, we can demonstrate strong effects of SNP associated with calcium dysregulation and ROS formation in primary neural cells, which were detectable already at moderate dosages. KW - silver nanoparticles KW - neurons KW - oxidative stress KW - protein carbonyls KW - calcium Y1 - 2012 U6 - https://doi.org/10.1093/toxsci/kfs003 SN - 1096-6080 VL - 126 IS - 2 SP - 457 EP - 468 PB - Oxford Univ. Press CY - Oxford ER -