TY - JOUR A1 - Hamann, Wolf-Rainer A1 - Brown, John C. A1 - Feldmeier, Achim A1 - Oskinova, Lida T1 - On the wavelength drift of spectral features from structured hot star winds N2 - Spectral lines formed in stellar winds from OB stars are observed to exhibit profile variations. Discrete Absorption Components (DACs) show a remarkably slow wavelength drift with time. In a straightforward interpretation, this is in sharp contradiction to the steep velocity law predicted by the radiation-driven wind theory, and by semi- empirical profile fitting. In the present paper we re-discuss the interpretation of the drift rate. We show that the Co- rotating Interaction Region (CIR) model for the formation of DACs does not explain their slow drift rate as a consequence of rotation. On the contrary, the apparent acceleration of a spectral CIR feature is even higher than for the corresponding kinematical model without rotation. However, the observations can be understood by distinguishing between the velocity field of the matter flow, and the velocity law for the motion of the patterns in which the DAC features are formed. If the latter propagate upstream against the matter flow, the resulting wavelength drift mimics a much slower acceleration although the matter is moving fast. Additional to the DACs, a second type of recurrent structures is present in observed OB star spectra, the so-called modulations. In contrast to the DACs, these structures show a steep acceleration compatible with the theoretically predicted velocity law. We see only two possible consistent scenarios. Either, the wind is accelerated fast, and the modulations are formed in advected structures, while the DACs come from structures which are propagating upstream. Or, alternatively, steep and shallow velocity laws may co-exist at the same time in different spatial regions or directions of the wind. Y1 - 2001 ER - TY - JOUR A1 - Oskinova, Lida A1 - Ignace, Richard A1 - Hamann, Wolf-Rainer A1 - Pollock, A. M. T. A1 - Brown, John C. T1 - The conspicuous absence of X-ray emission from carbon-enriched Wolf-Rayet stars N2 - The carbon-rich WC5 star WR 114 was not detected during a 15.9 ksec XMM-Newton observation, implying an upper limit to the X-ray luminosity of Lx < 2.5 x 1030 ergs-1 and to the X-ray to bolometric luminosity ratio of Lx/Lbol < 4 x 10-9. This confirms indications from earlier less sensitive measurements that there has been no convincing X-ray detection of any single WC star. This lack of detections is reinforced by XMM-Newton and CHANDRA observations of WC stars. Thus the conclusion has to be drawn that the stars with radiatively-driven stellar winds of this particular class are insignificant X-ray sources. We attribute this to photoelectronic absorption by the stellar wind. The high opacity of the metal-rich and dense winds from WC stars puts the radius of optical depth unity at hundreds or thousands of stellar radii for much of the X-ray band. We believe that the essential absence of hot plasma so far out in the wind exacerbated by the large distances and correspondingly high ISM column densities makes the WC stars too faint to be detectable with current technology. The result also applies to many WC stars in binary systems, of which only about 20 % are identified X-ray sources, presumably due to colliding winds. Y1 - 2003 ER - TY - JOUR A1 - Ignace, Richard A1 - Oskinova, Lida A1 - Brown, John C. T1 - XMM-Newton Observations of the Nitrogen-Rich Wolf-Rayet star WR1 N2 - We present XMM-Newton results for the X-ray spectrum from the N-rich Wolf-Rayet (WR) star WR 1. The EPIC instrument was used to obtain a medium-resolution spectrum. The following features characterize this spectrum: (a) significant emission "bumps" appear that are coincident with the wavelengths of typical strong lines, such as Mg XI, Si XIII and S XV; (b) little emission is detected above 4 keV, in contrast to recent reports of a hard component in the stars WR 6 and WR 110 which are of similar subtype; and (c) evidence for sulfur K-edge absorption at about 2.6 keV, which could only arise from absorption of X-rays by the ambient stellar wind. The lack of hard emission in our dataset is suggestive that WR 1 may truly be a single star, thus representing the first detailed X-ray spectrum that isolates the WR wind alone (in contrast to colliding wind zones). Although the properties of the S-edge are not well-constrained by our data, it does appear to be real, and its detection indicates that at least some of the hot gas in WR 1 must reside interior to the radius of optical depth unity for the total absorptive opacity at the energy of the edge. Y1 - 2003 ER - TY - JOUR A1 - Feldmeier, Achim A1 - Oskinova, Lida A1 - Hamann, Wolf-Rainer A1 - Owocki, S. P. T1 - Overloaded and fractured winds N2 - We discuss the connection between wind overloading and discrete absorption components in P Cygni line profiles from O stars. Overloading can create horizontal plateaus in the radial wind speed that cause the extra absorption in the line profile. The upstream propagation speed of these velocity plateaus is analyzed. The second part of the paper deals with X-ray emission from O stars. X-ray line profiles observed with Chandra and XMM are often symmetric, contrary to what is expected for lines from a homogeneous wind. We discuss the influence on line symmetry of photon escape channels in a strongly clumped wind. Y1 - 2003 SN - 1-58381-133-8 ER - TY - JOUR A1 - Feldmeier, Achim A1 - Oskinova, Lida A1 - Hamann, Wolf-Rainer T1 - X-ray line emission from a fragmented stellar wind N2 - We discuss X-ray line formation in dense O star winds. A random distribution of wind shocks is assumed to emit X-rays that are partially absorbed by cooler wind gas. The cool gas resides in highly compressed fragments oriented perpendicular to the radial flow direction. For fully opaque fragments, we find that the blueshifted part of X-ray line profiles remains flat-topped even after severe wind attenuation, whereas the red part shows a steep decline. These box- type, blueshifted profiles resemble recent Chandra observations of the O3 star zeta Pup. For partially transparent fragments, the emission lines become similar to those from a homogeneous wind. Y1 - 2003 ER - TY - JOUR A1 - Oskinova, Lida A1 - Feldmeier, Achim A1 - Hamann, Wolf-Rainer T1 - X-ray line profiles from structured stellar winds N2 - Absorbing material compressed in a number of thin shells is effectively less opaque for X-rays than smoothly distributed gas. The calculated X-ray emission line profiles are red-shifted if the emission arises from the starward side of the shells. Y1 - 2003 SN - 1-58381-133-8 ER - TY - JOUR A1 - Oskinova, Lida A1 - Feldmeier, Achim A1 - Hamann, Wolf-Rainer T1 - X-ray emission lines from inhomogeneous stellar winds N2 - It is commonly adopted that X-rays from O stars are produced deep inside the stellar wind, and transported outwards through the bulk of the expanding matter which attenuates the radiation and affects the shape of emission line profiles. The ability of the X-ray observatories Chandra and XMM-Newton to resolve these lines spectroscopically provided a stringent test for the theory of the X-ray production. It turned out that none of the existing models was able to fit the observations consistently. The possible caveat of these models was the underlying assumption of a smooth stellar wind. Motivated by the evidence that the stellar winds are in fact structured, we present a 2-D numerical model of a stochastic, inhomogeneous wind. Small parcels of hot, X-ray emitting gas are permeated by cool, absorbing wind material which is compressed into thin shell fragments. Wind fragmentation alters the radiative transfer drastically, compared to homogeneous models of the same mass-loss rate. X-rays produced deep inside the wind, which would be totally absorbed in a homogeneous flow, can effectively escape from a fragmented wind. The wind absorption becomes wavelength independent if the individual fragments are optically thick. The X-ray line profiles are flat-topped in the blue part and decline steeply in the red part for the winds with a short acceleration zone. For the winds where the acceleration extends over significant distances, the lines can appear nearly symmetric and only slightly blueshifted, in contrast to the skewed, triangular line profiles typically obtained from homogeneous wind models of high optical depth. We show that profiles from a fragmented wind model can reproduce the observed line profiles from zeta Orionis. The present numerical modeling confirms the results from a previous study, where we derived analytical formulae from a statistical treatment Y1 - 2004 SN - 0004-6361 ER - TY - JOUR A1 - Brown, John C. A1 - Barrett, R. K. A1 - Oskinova, Lida A1 - Owocki, S. P. A1 - Hamann, Wolf-Rainer A1 - de Jong, J. A. A1 - Kaper, L. A1 - Henrichs, H. F. T1 - Inference of hot star density stream properties from data on rotationally recurrent DACs N2 - The information content of data on rotationally periodic recurrent discrete absorption components (DACs) in hot star wind emission lines is discussed. The data comprise optical depths tau(w,phi) as a function of dimensionless Doppler velocity w=(Deltalambda/lambda(0))(c/v(infinity)) and of time expressed in terms of stellar rotation angle phi. This is used to study the spatial distributions of density, radial and rotational velocities, and ionisation structures of the corotating wind streams to which recurrent DACs are conventionally attributed. The simplifying assumptions made to reduce the degrees of freedom in such structure distribution functions to match those in the DAC data are discussed and the problem then posed in terms of a bivariate relationship between tau(w, phi) and the radial velocity v(r)(r), transverse rotation rate Omega(r) and density rho(r, phi) structures of the streams. The discussion applies to cases where: the streams are equatorial; the system is seen edge on; the ionisation structure is approximated as uniform; the radial and transverse velocities are taken to be functions only of radial distance but the stream density is allowed to vary with azimuth. The last kinematic assumption essentially ignores the dynamical feedback of density on velocity and the relationship of this to fully dynamical models is discussed. The case of narrow streams is first considered, noting the result of Hamann et al. (2001) that the apparent acceleration of a narrow stream DAC is higher than the acceleration of the matter itself, so that the apparent slow acceleration of DACs cannot be attributed to the slowness of stellar rotation. Thus DACs either involve matter which accelerates slower than the general wind flow, or they are formed by structures which are not advected with the matter flow but propagate upstream (such as Abbott waves). It is then shown how, in the kinematic model approximation, the radial speed of the absorbing matter can be found by inversion of the apparent acceleration of the narrow DAC, for a given rotation law. The case of broad streams is more complex but also more informative. The observed tau(w,phi) is governed not only by v(r)(r) and Omega(r) of the absorbing stream matter but also by the density profile across the stream, determined by the azimuthal (phi(0)) distribution function F- 0(phi(0)) of mass loss rate around the stellar equator. When F-0(phi(0)) is fairly wide in phi(0), the acceleration of the DAC peak tau(w, phi) in w is generally slow compared with that of a narrow stream DAC and the information on v(r)(r), Omega(r) and F-0(phi(0)) is convoluted in the data tau(w, phi). We show that it is possible, in this kinematic model, to recover by inversion, complete information on all three distribution functions v(r)(r), Omega(r) and F- 0(phi(0)) from data on tau(w, phi) of sufficiently high precision and resolution since v(r)(r) and Omega(r) occur in combination rather than independently in the equations. This is demonstrated for simulated data, including noise effects, and is discussed in relation to real data and to fully hydrodynamic models Y1 - 2004 SN - 0004-6361 ER - TY - JOUR A1 - Oskinova, Lida T1 - Evolution of X-ray emission from young massive star clusters N2 - The evolution of X-ray emission from young massive star clusters is modelled, taking into account the emission from the stars as well as from the cluster wind. It is shown that the level and character of the soft (0.2-10 keV) X-ray emission change drastically with cluster age and are tightly linked with stellar evolution. Using the modem X-ray observations of massive stars, we show that the correlation between bolometric and X-ray luminosity known for single O stars also holds for O + O and (Wolf-Rayet) WR + O binaries. The diffuse emission originates from the cluster wind heated by the kinetic energy of stellar winds and supernova explosions. To model the evolution of the cluster wind, the mass and energy yields from a population synthesis are used as input to a hydrodynamic model. It is shown that in a very young cluster the emission from the cluster wind is low. When the cluster evolves, WR stars are formed. Their strong stellar winds power an increasing X-ray emission of the cluster wind. Subsequent supernova explosions pump the level of diffuse emission even higher. Clusters at this evolutionary stage may have no X-ray-bright stellar point sources, but a relatively high level of diffuse emission. A supernova remnant may become a dominant X-ray source, but only for a short time interval of a few thousand years. We retrieve and analyse Chandra and XMM-Newton observations of six massive star clusters located in the Large Magellanic Cloud (LMC). Our model reproduces the observed diffuse and point-source emission from these LMC clusters, as well as from the Galactic clusters Arches, Quintuplet and NGC 3603 Y1 - 2005 SN - 0035-8711 ER - TY - JOUR A1 - Oskinova, Lida A1 - Feldmeier, Achim A1 - Hamann, Wolf-Rainer T1 - High-resolution X-ray spectroscopy of bright O-type stars JF - Monthly notices of the Royal Astronomical Society N2 - Archival X-ray spectra of the four prominent single, non-magnetic O stars zeta Pup, zeta Ori, xi Per and zeta Oph, obtained in high resolution with Chandra HETGS/MEG have been studied. The resolved X-ray emission line profiles provide information about the shocked, hot gas which emits the X-radiation, and about the bulk of comparably cool stellar wind material which partly absorbs this radiation. In this paper, we synthesize X-ray line profiles with a model of a clumpy stellar wind. We find that the geometrical shape of the wind inhomogeneities is important: better agreement with the observations can be achieved with radially compressed clumps than with spherical clumps. The parameters of the model, i.e. chemical abundances, stellar radius, mass-loss rate and terminal wind velocity, are taken from existing analyses of UV and optical spectra of the programme stars. On this basis, we also calculate the continuum-absorption coefficient of the cool-wind material, using the Potsdam Wolf-Rayet (POWR) model atmosphere code. The radial location of X-ray emitting gas is restricted from analysing the FIR line ratios of helium-like ions. The only remaining free parameter of our model is the typical distance between the clumps; here, we assume that at any point in the wind there is one clump passing by per one dynamical time-scale of the wind. The total emission in a model line is scaled to the observation. There is a good agreement between synthetic and observed line profiles. We conclude that the X-ray emission line profiles in O stars can be explained by hot plasma embedded in a cool wind which is highly clumped in the form of radially compressed shell fragments. KW - stars : individual : zeta Pup KW - stars : individual : zeta Ori KW - stars : individual : xi Per KW - stars : individual : zeta Oph KW - X-rays : stars Y1 - 2006 U6 - https://doi.org/10.1111/j.1365-2966.2006.10858.x SN - 0035-8711 VL - 372 SP - 313 EP - 326 PB - Oxford University Press CY - Oxford ER -