TY - JOUR A1 - Adelsberger, Joseph A1 - Metwalli, Ezzeldin A1 - Diethert, Alexander A1 - Grillo, Isabelle A1 - Bivigou Koumba, Achille Mayelle A1 - Laschewsky, André A1 - Müller-Buschbaum, Peter A1 - Papadakis, Christine M. T1 - Kinetics of collapse transition and cluster formation in a thermoresponsive micellar solution of P(S-b-NIPAM-b-S) induced by a temperature jump JF - Macromolecular rapid communications N2 - Structural changes at the intra- as well as intermicellar level were induced by the LCST-type collapse transition of poly(N-isopropyl acrylamide) in ABA triblock copolymer micelles in water. The distinct process kinetics was followed in situ and in real-time using time-resolved small-angle neutron scattering (SANS), while a micellar solution of a triblock copolymer, consisting of two short deuterated polystyrene endblocks and a long thermoresponsive poly(N-isopropyl acrylamide) middle block, was heated rapidly above its cloud point. A very fast collapse together with a multistep aggregation behavior is observed. The findings of the transition occurring at several size and time levels may have implications for the design and application of such thermoresponsive self-assembled systems. KW - polymer physics KW - thermoresponsive polymers KW - small-angle neutron scattering KW - time-resolved measurements Y1 - 2012 U6 - https://doi.org/10.1002/marc.201100631 SN - 1022-1336 VL - 33 IS - 3 SP - 254 EP - 259 PB - Wiley-Blackwell CY - Malden ER - TY - CHAP A1 - Buller, Jens A1 - Laschewsky, André A1 - Wischerhoff, Erik A1 - Fandrich, Artur A1 - Lisdat, Fred T1 - Smart synthetic macromolecules recognizing proteins T2 - Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS Y1 - 2012 SN - 0065-7727 VL - 244 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - de Molina, Paula Malo A1 - Herfurth, Christoph A1 - Laschewsky, André A1 - Gradzielski, Michael T1 - Structure and dynamics of networks in mixtures of hydrophobically modified telechelic multiarm polymers and oil in water microemulsions JF - Langmuir N2 - The structural and dynamical properties of oil-in-water (O/W) microemulsions (MEs) modified with telechelic polymers of different functionality (e.g., number of hydrophobically modified arms, f) were studied by means of dynamic light scattering (DLS), small-angle neutron scattering (SANS), and high frequency rheology measurements as a function of the polymer architecture and the amount of added polymer. For this purpose, we employed tailor-made hydrophobically end-capped poly(N,N-dimethylacrylamide) star polymers of a variable number of endcaps, f, of different alkyl chain lengths, synthesized by the reversible addition-fragmentation chain transfer method. The addition of the different end-capped polymers to an uncharged ME of O/W droplets leads to a large enhancement of the viscosity of the systems. SANS experiments show that the O/W ME droplets are not changed upon the addition of the polymer, and its presence only changes the interdroplet interactions. The viscosity increases largely upon addition of a polymer, and this enhancement depends pronouncedly on the alkyl length of the hydrophobic sticker as it controls the residence time in a ME droplet. Similarly, the high frequency modulus G(0) depends on the amount of added polymer but not on the sticker length. G(0) was found to be directly proportional to f - 1. The onset of network formation is shifted to a lower number of stickers per ME droplet with increasing f, and the network formation becomes more effective. Thus, the dynamics of network formation are controlled by the polymer architecture. The effect on the dynamics seen by DLS is even more pronounced. Upon increasing the polymer concentration, slower relaxation modes appear that become especially pronounced with increasing number of arms. The relaxation dynamics are correlated to the rheological relaxation, and both are controlled by the polymer architecture. Y1 - 2012 U6 - https://doi.org/10.1021/la303673a SN - 0743-7463 VL - 28 IS - 45 SP - 15994 EP - 16006 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Fandrich, Artur A1 - Buller, Jens A1 - Wischerhoff, Erik A1 - Laschewsky, André A1 - Lisdat, Fred T1 - Electrochemical detection of the thermally induced phase transition of a thin stimuli-responsive polymer film JF - ChemPhysChem : a European journal of chemical physics and physical chemistry KW - cyclic voltammetry KW - electrochemical impedance spectroscopy KW - polymers KW - surface chemistry KW - surface plasmon resonance Y1 - 2012 U6 - https://doi.org/10.1002/cphc.201100924 SN - 1439-4235 VL - 13 IS - 8 SP - 2020 EP - 2023 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Herfurth, Christoph A1 - de Molina, Paula Malo A1 - Wieland, Christoph A1 - Rogers, Sarah A1 - Gradzielski, Michael A1 - Laschewsky, André T1 - One-step RAFT synthesis of well-defined amphiphilic star polymers and their self-assembly in aqueous solution JF - Polymer Chemistry N2 - Multifunctional chain transfer agents for RAFT polymerisation were designed for the one-step synthesis of amphiphilic star polymers. Thus, hydrophobically end-capped 3- and 4-arm star polymers, as well as linear ones for reference, were made of the hydrophilic monomer N,N-dimethylacrylamide (DMA) in high yield with molar masses up to 150 000 g mol(-1), narrow molar mass distribution (PDI <= 1.2) and high end group functionality (similar to 90%). The associative telechelic polymers form transient networks of interconnected aggregates in aqueous solution, thus acting as efficient viscosity enhancers and rheology modifiers, eventually forming hydrogels. The combination of dynamic light scattering (DLS), small angle neutron scattering (SANS) and rheology experiments revealed that several molecular parameters control the structure and therefore the physical properties of the aggregates. In addition to the size of the hydrophilic block (maximum length for connection) and the length of the hydrophobic alkyl chain ends (stickiness), the number of arms (functionality) proved to be a key parameter. Y1 - 2012 U6 - https://doi.org/10.1039/c2py20126g SN - 1759-9954 VL - 3 IS - 6 SP - 1606 EP - 1617 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Herfurth, Christoph A1 - Voll, Dominik A1 - Buller, Jens A1 - Weiss, Jan A1 - Barner-Kowollik, Christopher A1 - Laschewsky, André T1 - Radical addition fragmentation chain transfer (RAFT) polymerization of ferrocenyl (meth)acrylates JF - Journal of polymer science : A, Polymer chemistry N2 - We report on the controlled free radical homopolymerization of 1-ferrocenylethyl acrylate as well as of three new ferrocene bearing monomers, namely 4-ferrocenylbutyl acrylate, 2-ferrocenylamido-2-methylpropyl acrylate, and 4-ferrocenylbutyl methacrylate, by the RAFT technique. For comparison, the latter monomer was polymerized using ATRP, too. The ferrocene containing monomers were found to be less reactive than their analogues free of ferrocene. The reasons for the low polymerizability are not entirely clear. As the addition of free ferrocene to the reaction mixture did not notably affect the polymerizations, sterical hindrance by the bulky ferrocene moiety fixed on the monomers seems to be the most probable explanation. Molar masses found for 1-ferrocenylethyl acrylate did not exceed 10,000 g mol(-1), while for 4-ferrocenylbutyl (meth) acrylate molar masses of 15,000 g mol(-1) could be obtained. With PDIs as low as 1.3 in RAFT polymerization of the monomers, good control over the polymerization was achieved. KW - ferrocene KW - living radical polymerization (LRP) KW - monomers KW - radical addition fragmentation chain transfer (RAFT) KW - radical polymerization KW - redox polymers KW - synthesis Y1 - 2012 U6 - https://doi.org/10.1002/pola.24994 SN - 0887-624X VL - 50 IS - 1 SP - 108 EP - 118 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Laschewsky, André T1 - Recent trends in the synthesis of polyelectrolytes JF - Current opinion in colloid & interface science : current chemistry N2 - Recent developments in the synthesis of polyelectrolytes are highlighted, with respect to the nature of the ionic groups, the polymer backbones, synthetic methods, and additional functionality given to the polyelectrolytes. In fact, the synthesis of new polyelectrolytes is mostly driven by material aspects, currently. The article pays particular attention to strong polyelectrolytes, and the new methods of controlled polymerization. These methods and the so-called click reactions have enabled novel designs of polyelectrolytes. Nevertheless, the polymerization of unprotected ionic monomers is still challenging and limits the synthetic possibilities. The structural aspects are complemented by considerations with respect to the aspired uses of the new polyelectrolytes. KW - Polyelectrolytes KW - Synthesis KW - Ionic monomers KW - Controlled polymerization KW - "click" chemistry Y1 - 2012 U6 - https://doi.org/10.1016/j.cocis.2011.08.001 SN - 1359-0294 VL - 17 IS - 2 SP - 56 EP - 63 PB - Elsevier CY - London ER - TY - CHAP A1 - Laschewsky, André A1 - Herfurth, Christoph A1 - Miasnikova, Anna A1 - Wieland, Christoph A1 - Wischerhoff, Erik A1 - Gradzielski, Michael A1 - de Molina, Paula Malo A1 - Weiss, Jan T1 - Stars and blocks tailoring polymeric rheology modifiers for aqueous media by controlled free radical polymerization T2 - Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS Y1 - 2012 SN - 0065-7727 VL - 244 PB - American Chemical Society CY - Washington ER - TY - CHAP A1 - Laschewsky, André A1 - Liang, Hua A1 - Rabe, Jürgen P. A1 - Skrabania, Katja A1 - Stahlhut, Frank A1 - Weiss, Jan A1 - Zehm, Daniel T1 - Molecularly designed polymer colloids From giant surfactants to multicompartment micelles T2 - Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS Y1 - 2012 SN - 0065-7727 VL - 244 IS - 32 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Miasnikova, Anna A1 - Laschewsky, André T1 - Influencing the phase transition temperature of poly(methoxy diethylene glycol acrylate) by molar mass, end groups, and polymer architecture JF - Journal of polymer science : A, Polymer chemistry N2 - The easily accessible, but virtually overlooked monomer methoxy diethylene glycol acrylate was polymerized by the RAFT method using monofunctional, difunctional, and trifunctional trithiocarbonates to afford thermoresponsive polymers exhibiting lower critical solution temperature-type phase transitions in aqueous solution. The use of the appropriate RAFT agent allowed for the preparation and systematic variation of polymers with defined molar mass, end-groups, and architecture, including amphiphilic diblock, symmetrical triblock, and triarm star-block copolymers, containing polystyrene as permanently hydrophobic constituent. The cloud points (CPs) of the various polymers proved to be sensitive to all varied parameters, namely molar mass, nature, and number of the end-groups, and the architecture, up to relatively high molar masses. Thus, CPs of the polymers can be adjusted within the physiological interesting range of 2040 degrees C. Remarkably, CPs increased with the molar mass, even when hydrophilic end groups were attached to the polymers. KW - water-soluble polymers KW - diblock copolymers KW - triblock copolymers KW - star-block copolymers KW - reversible addition fragmentation chain transfer (RAFT) KW - LCST KW - stimuli-sensitive polymers Y1 - 2012 U6 - https://doi.org/10.1002/pola.26116 SN - 0887-624X VL - 50 IS - 16 SP - 3313 EP - 3323 PB - Wiley-Blackwell CY - Hoboken ER -