TY - JOUR A1 - Agarwal, Ankit A1 - Maheswaran, Rathinasamy A1 - Marwan, Norbert A1 - Caesar, Levke A1 - Kurths, Jürgen T1 - Wavelet-based multiscale similarity measure for complex networks JF - The European physical journal : B, Condensed matter and complex systems N2 - In recent years, complex network analysis facilitated the identification of universal and unexpected patterns in complex climate systems. However, the analysis and representation of a multiscale complex relationship that exists in the global climate system are limited. A logical first step in addressing this issue is to construct multiple networks over different timescales. Therefore, we propose to apply the wavelet multiscale correlation (WMC) similarity measure, which is a combination of two state-of-the-art methods, viz. wavelet and Pearson’s correlation, for investigating multiscale processes through complex networks. Firstly we decompose the data over different timescales using the wavelet approach and subsequently construct a corresponding network by Pearson’s correlation. The proposed approach is illustrated and tested on two synthetics and one real-world example. The first synthetic case study shows the efficacy of the proposed approach to unravel scale-specific connections, which are often undiscovered at a single scale. The second synthetic case study illustrates that by dividing and constructing a separate network for each time window we can detect significant changes in the signal structure. The real-world example investigates the behavior of the global sea surface temperature (SST) network at different timescales. Intriguingly, we notice that spatial dependent structure in SST evolves temporally. Overall, the proposed measure has an immense potential to provide essential insights on understanding and extending complex multivariate process studies at multiple scales. KW - Statistical and Nonlinear Physics Y1 - 2018 U6 - https://doi.org/10.1140/epjb/e2018-90460-6 SN - 1434-6028 SN - 1434-6036 VL - 91 IS - 11 PB - Springer CY - New York ER - TY - JOUR A1 - Aydiner, Ekrem A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf T1 - Wealth distribution, Pareto law, and stretched exponential decay of money BT - Computer simulations analysis of agent-based models JF - Physica : europhysics journal ; A, Statistical mechanics and its applications N2 - We study by Monte Carlo simulations a kinetic exchange trading model for both fixed and distributed saving propensities of the agents and rationalize the person and wealth distributions. We show that the newly introduced wealth distribution – that may be more amenable in certain situations – features a different power-law exponent, particularly for distributed saving propensities of the agents. For open agent-based systems, we analyze the person and wealth distributions and find that the presence of trap agents alters their amplitude, leaving however the scaling exponents nearly unaffected. For an open system, we show that the total wealth – for different trap agent densities and saving propensities of the agents – decreases in time according to the classical Kohlrausch–Williams–Watts stretched exponential law. Interestingly, this decay does not depend on the trap agent density, but rather on saving propensities. The system relaxation for fixed and distributed saving schemes are found to be different. KW - Econophysics KW - Wealth and income distribution KW - Pareto law KW - Scaling exponents Y1 - 2017 U6 - https://doi.org/10.1016/j.physa.2017.08.017 SN - 0378-4371 SN - 1873-2119 VL - 490 SP - 278 EP - 288 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Münch, Thomas A1 - Laepple, Thomas T1 - What climate signal is contained in decadal- to centennial-scale isotope variations from Antarctic ice cores? JF - Climate of the past : CP N2 - Ice-core-based records of isotopic composition are a proxy for past temperatures and can thus provide information on polar climate variability over a large range of timescales. However, individual isotope records are affected by a multitude of processes that may mask the true temperature variability. The relative magnitude of climate and non-climate contributions is expected to vary as a function of timescale, and thus it is crucial to determine those temporal scales on which the actual signal dominates the noise. At present, there are no reliable estimates of this timescale dependence of the signal-to-noise ratio (SNR). Here, we present a simple method that applies spectral analyses to stable-isotope data from multiple cores to estimate the SNR, and the signal and noise variability, as a function of timescale. The method builds on separating the contributions from a common signal and from local variations and includes a correction for the effects of diffusion and time uncertainty. We apply our approach to firn-core arrays from Dronning Maud Land (DML) in East Antarctica and from the West Antarctic Ice Sheet (WAIS). For DML and decadal to multi-centennial timescales, we find an increase in the SNR by nearly 1 order of magnitude (similar to 0.2 at decadal and similar to 1.0 at multi-centennial scales). The estimated spectrum of climate variability also shows increasing variability towards longer timescales, contrary to what is traditionally inferred from single records in this region. In contrast, the inferred variability spectrum for WAIS stays close to constant over decadal to centennial timescales, and the results even suggest a decrease in SNR over this range of timescales. We speculate that these differences between DML and WAIS are related to differences in the spatial and temporal scales of the isotope signal, highlighting the potentially more homogeneous atmospheric conditions on the Antarctic Plateau in contrast to the marine-influenced conditions on WAIS. In general, our approach provides a methodological basis for separating local proxy variability from coherent climate variations, which is applicable to a large set of palaeoclimate records. Y1 - 2018 U6 - https://doi.org/10.5194/cp-14-2053-2018 SN - 1814-9324 SN - 1814-9332 VL - 14 IS - 12 SP - 2053 EP - 2070 PB - Copernicus Gesellschaft mbH CY - Göttingen ER - TY - JOUR A1 - Baushev, Anton N. A1 - Barkov, M. V. T1 - Why does Einasto profile index n similar to 6 occur so frequently? JF - Journal of cosmology and astroparticle physics N2 - We consider the behavior of spherically symmetric Einasto halos composed of gravitating particles in the Fokker-Planck approximation. This approach allows us to consider the undesirable influence of close encounters in the N-body simulations more adequately than the generally accepted criteria. The Einasto profile with index n approximate to 6 is a stationary solution of the Fokker-Planck equation in the halo center. There are some reasons to believe that the solution is an attractor. Then the Fokker-Planck diffusion tends to transform a density profile to the equilibrium one with the Einasto index n approximate to 6. We suggest this effect as a possible reason why the Einasto index n approximate to 6 occurs so frequently in the interpretation of N-body simulation results. The results obtained cast doubt on generally accepted criteria of N-body simulation convergence. KW - dark matter theory KW - dwarfs galaxies KW - galaxy evolution KW - rotation curves of galaxies Y1 - 2018 U6 - https://doi.org/10.1088/1475-7516/2018/03/034 SN - 1475-7516 IS - 3 PB - IOP Publ. Ltd. CY - Bristol ER -