TY - JOUR A1 - Raupbach, Jana A1 - Ott, Christiane A1 - König, Jeannette A1 - Grune, Tilman T1 - Proteasomal degradation of glycated proteins depends on substrate unfolding: Preferred degradation of moderately modified myoglobin JF - Free radical biology and medicine : the official journal of the Oxygen Society, a constituent member of the International Society for Free Radical Research N2 - The Maillard reaction generates protein modifications which can accumulate during hyperglycemia or aging and may have inflammatory consequences. The proteasome is one of the major intracellular systems involved in the proteolytic degradation of modified proteins but its role in the degradation of glycated proteins is scarcely studied. In this study, chemical and structural changes of glycated myoglobin were analyzed and its degradation by 20S proteasome was studied. Myoglobin was incubated with physiological (5-10 mM), moderate (50-100 mM) and severe levels (300 mM) of glucose or methylglyoxal (MGO, 50 mM). Glycation increased myoglobin's fluorescence and surface hydrophobicity. Severe glycation generated crosslinked proteins as shown by gel electrophoresis. The concentration of advanced glycation endproducts (AGEs) N-epsilon-carboxymethyl lysine (CML), N-epsilon-carboxyethyl lysine (CEL), methylglyoxal-derived hydroimidazolone-1 (MG-H1), pentosidine and pyrraline was analyzed after enzymatic hydrolysis followed by UPLC-MS/MS. Higher concentrations of glucose increased all analyzed AGEs and incubation with MGO led to a pronounced increase of CEL and MG-H1. The binding of the heme group to apo-myoglobin was decreased with increasing glycation indicating the loss of tertiary protein structure. Proteasomal degradation of modified myoglobin compared to native myoglobin depends on the degree of glycation: physiological conditions decreased proteasomal degradation whereas moderate glycation increased degradation. Severe glycation again decreased proteolytic cleavage which might be due to crosslinking of protein monomers. The activity of the proteasomal subunit beta 5 is influenced by the presence of glycated myoglobin. In conclusion, the role of the proteasome in the degradation of glycated proteins is highly dependent on the level of glycation and consequent protein unfolding. KW - Glycation KW - Myoglobin KW - Heme KW - Advanced glycation endproducts KW - 20S KW - proteasome Y1 - 2020 U6 - https://doi.org/10.1016/j.freeradbiomed.2019.11.024 SN - 0891-5849 SN - 1873-4596 VL - 152 SP - 516 EP - 524 PB - Elsevier CY - New York ER - TY - JOUR A1 - Wiedmer, Petra A1 - Jung, Tobias A1 - Castro, Jose Pedro A1 - Pomatto, Laura C. D. A1 - Sun, Patrick Y. A1 - Davies, Kelvin J. A. A1 - Grune, Tilman T1 - Sarcopenia BT - molecular mechanisms and open questions JF - Ageing research reviews : ARR N2 - Sarcopenia represents a muscle-wasting syndrome characterized by progressive and generalized degenerative loss of skeletal muscle mass, quality, and strength occurring during normal aging. Sarcopenia patients are mainly suffering from the loss in muscle strength and are faced with mobility disorders reducing their quality of life and are, therefore, at higher risk for morbidity (falls, bone fracture, metabolic diseases) and mortality.
Several molecular mechanisms have been described as causes for sarcopenia that refer to very different levels of muscle physiology. These mechanisms cover e. g. function of hormones (e. g. IGF-1 and Insulin), muscle fiber composition and neuromuscular drive, myo-satellite cell potential to differentiate and proliferate, inflammatory pathways as well as intracellular mechanisms in the processes of proteostasis and mitochondrial function.
In this review, we describe sarcopenia as a muscle-wasting syndrome distinct from other atrophic diseases and summarize the current view on molecular causes of sarcopenia development as well as open questions provoking further research efforts for establishing efficient lifestyle and therapeutic interventions. KW - molecular pathways KW - proteostasis KW - proteasome KW - autophagy KW - mitochondria, KW - muscle fibre composition Y1 - 2020 U6 - https://doi.org/10.1016/j.arr.2020.101200 SN - 1568-1637 SN - 1872-9649 VL - 65 PB - Elsevier CY - Clare ER - TY - JOUR A1 - Kuckelkorn, Ulrike A1 - Stübler, Sabine A1 - Textoris-Taube, Kathrin A1 - Kilian, Christiane A1 - Niewienda, Agathe A1 - Henklein, Petra A1 - Janek, Katharina A1 - Stumpf, Michael P. H. A1 - Mishto, Michele A1 - Liepe, Juliane T1 - Proteolytic dynamics of human 20S thymoproteasome JF - The journal of biological chemistry N2 - An efficient immunosurveillance of CD8(+) T cells in the periphery depends on positive/negative selection of thymocytes and thus on the dynamics of antigen degradation and epitope production by thymoproteasome and immunoproteasome in the thymus. Although studies in mouse systems have shown how thymoproteasome activity differs from that of immunoproteasome and strongly impacts the T cell repertoire, the proteolytic dynamics and the regulation of human thymoproteasome are unknown. By combining biochemical and computational modeling approaches, we show here that human 20S thymoproteasome and immunoproteasome differ not only in the proteolytic activity of the catalytic sites but also in the peptide transport. These differences impinge upon the quantity of peptide products rather than where the substrates are cleaved. The comparison of the two human 20S proteasome isoforms depicts different processing of antigens that are associated to tumors and autoimmune diseases. KW - proteasome KW - protein degradation KW - antigen processing KW - computational biology KW - bioinformatics KW - thymoproteasome KW - thymus KW - proteolysis Y1 - 2019 U6 - https://doi.org/10.1074/jbc.RA118.007347 SN - 1083-351X VL - 294 IS - 19 SP - 7740 EP - 7754 PB - American Society for Biochemistry and Molecular Biology CY - Bethesda ER - TY - JOUR A1 - Wendler, Petra A1 - Enenkel, Cordula T1 - Nuclear Transport of Yeast Proteasomes JF - Frontiers in molecular biosciences N2 - Proteasomes are key proteases in regulating protein homeostasis. Their holo-enzymes are composed of 40 different subunits which are arranged in a proteolytic core (CP) flanked by one to two regulatory particles (RP). Proteasomal proteolysis is essential for the degradation of proteins which control time-sensitive processes like cell cycle progression and stress response. In dividing yeast and human cells, proteasomes are primarily nuclear suggesting that proteasomal proteolysis is mainly required in the nucleus during cell proliferation. In yeast, which have a closed mitosis, proteasomes are imported into the nucleus as immature precursors via the classical import pathway. During quiescence, the reversible absence of proliferation induced by nutrient depletion or growth factor deprivation, proteasomes move from the nucleus into the cytoplasm. In the cytoplasm of quiescent yeast, proteasomes are dissociated into CP and RP and stored in membrane-less cytoplasmic foci, named proteasome storage granules (PSGs). With the resumption of growth, PSGs clear and mature proteasomes are transported into the nucleus by Blm10, a conserved 240 kDa protein and proteasome-intrinsic import receptor. How proteasomes are exported from the nucleus into the cytoplasm is unknown. KW - proteasome KW - nuclear transport KW - importin KW - karyopherin KW - Blm10 KW - proteasome storage granules Y1 - 2019 U6 - https://doi.org/10.3389/fmolb.2019.00034 SN - 2296-889X VL - 6 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Zaikin, Alexey A1 - Kurths, Jürgen T1 - Optimal length transportation hypothesis to model proteasome product size distribution JF - Journal of biological physics : emphasizing physical principles in biological research ; an international journal for the formulation and application of mathematical models in the biological sciences N2 - This paper discusses translocation features of the 20S proteasome in order to explain typical proteasome length distributions. We assume that the protein transport depends significantly on the fragment length with some optimal length which is transported most efficiently. By means of a simple one-channel model, we show that this hypothesis can explain both the one- and the three-peak length distributions found in experiments. A possible mechanism of such translocation is provided by so-called fluctuation-driven transport. KW - proteasome KW - protein translocation KW - stochastic process KW - ratchets Y1 - 2006 U6 - https://doi.org/10.1007/s10867-006-9014-z SN - 0092-0606 VL - 32 IS - 3-4 SP - 231 EP - 243 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Uestuen, Suayib A1 - Boernke, Frederik T1 - Interactions of Xanthomonas type-III effector proteins with the plant ubiquitin and ubiquitin-like pathways JF - Frontiers in plant science N2 - In eukaryotes, regulated protein turnover is required during many cellular processes, including defense against pathogens. Ubiquitination and degradation of ubiquitinated proteins via the ubiquitin proteasome system (UPS) is the main pathway for the turnover of intracellular proteins in eukaryotes. The extensive utilization of the UPS in host cells makes it an ideal pivot for the manipulation of cellular processes by pathogens. Like many other Gram-negative bacteria, Xanthomonas species secrete a suite of type-III effector proteins (T3Es) into their host cells to promote virulence. Some of these T3Es exploit the plant UPS to interfere with immunity. This review summarizes T3E examples from the genus Xanthomonas with a proven or suggested interaction with the host UPS or UPS-like systems and also discusses the apparent paradox that arises from the presence of T3Es that inhibit the UPS in general while others rely on its activity for their function. KW - Xanthomonas KW - type-III effector KW - ubiquitin KW - proteasome KW - plant defense Y1 - 2014 U6 - https://doi.org/10.3389/fpls.2014.00736 SN - 1664-462X VL - 5 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Nguyen, Hung M. A1 - Schippers, Jos H. M. A1 - Goni-Ramos, Oscar A1 - Christoph, Mathias P. A1 - Dortay, Hakan A1 - van der Hoorn, Renier A. L. A1 - Müller-Röber, Bernd T1 - An upstream regulator of the 26S proteasome modulates organ size in Arabidopsis thaliana JF - The plant journal N2 - In both animal and plant kingdoms, body size is a fundamental but still poorly understood attribute of biological systems. Here we report that the Arabidopsis NAC transcription factor Regulator of Proteasomal Gene Expression' (RPX) controls leaf size by positively modulating proteasome activity. We further show that the cis-element recognized by RPX is evolutionarily conserved between higher plant species. Upon over-expression of RPX, plants exhibit reduced growth, which may be reversed by a low concentration of the pharmacological proteasome inhibitor MG132. These data suggest that the rate of protein turnover during growth is a critical parameter for determining final organ size. KW - Arabidopsis thaliana KW - organ size KW - evolution KW - leaf development KW - proteasome KW - gene regulatory network Y1 - 2013 U6 - https://doi.org/10.1111/tpj.12097 SN - 0960-7412 VL - 74 IS - 1 SP - 25 EP - 36 PB - Wiley-Blackwell CY - Hoboken ER -