TY - JOUR A1 - Badalyan, Artavazd A1 - Neumann-Schaal, Meina A1 - Leimkühler, Silke A1 - Wollenberger, Ursula T1 - A Biosensor for aromatic aldehydes comprising the mediator dependent PaoABC-Aldehyde oxidoreductase JF - Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis N2 - A novel aldehyde oxidoreductase (PaoABC) from Escherichia coli was utilized for the development of an oxygen insensitive biosensor for benzaldehyde. The enzyme was immobilized in polyvinyl alcohol and currents were measured for aldehyde oxidation with different one and two electron mediators with the highest sensitivity for benzaldehyde in the presence of hexacyanoferrate(III). The benzaldehyde biosensor was optimized with respect to mediator concentration, enzyme loading and pH using potassium hexacyanoferrate(III). The linear measuring range is between 0.5200 mu M benzaldehyde. In correspondence with the substrate selectivity of the enzyme in solution the biosensor revealed a preference for aromatic aldehydes and less effective conversion of aliphatic aldehydes. The biosensor is oxygen independent, which is a particularly attractive feature for application. The biosensor can be applied to detect contaminations with benzaldehyde in solvents such as benzyl alcohol, where traces of benzaldehyde in benzyl alcohol down to 0.0042?% can be detected. KW - Aldehyde oxidoreductase KW - Benzaldehyde KW - Biosensor KW - Aromatic aldehydes KW - Molybdenum cofactor Y1 - 2013 U6 - https://doi.org/10.1002/elan.201200362 SN - 1040-0397 VL - 25 IS - 1 SP - 101 EP - 108 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Boehmer, Nadine A1 - Hartmann, Tobias A1 - Leimkühler, Silke T1 - The chaperone FdsC for Rhodobacter capsulatus formate dehydrogenase binds the bis-molybdopterin guanine dinucleotide cofactor JF - FEBS letters : the journal for rapid publication of short reports in molecular biosciences N2 - Molybdoenzymes are complex enzymes in which the molybdenum cofactor (Moco) is deeply buried in the enzyme. Most molybdoenzymes contain a specific chaperone for the insertion of Moco. For the formate dehydrogenase FdsGBA from Rhodobacter capsulatus the two chaperones FdsC and FdsD were identified to be essential for enzyme activity, but are not a subunit of the mature enzyme. Here, we purified and characterized the FdsC protein after heterologous expression in Escherichia coli. We were able to copurify FdsC with the bound Moco derivate bis-molybdopterin guanine dinucleotide. This cofactor successfully was used as a source to reconstitute the activity of molybdoenzymes. Structured summary of protein interactions: FdsC and FdsC bind by molecular sieving (View interaction) FdsD binds to RcMobA by surface plasmon resonance (View interaction) FdsC binds to RcMobA by surface plasmon resonance (View interaction) FdsC binds to FdsA by surface plasmon resonance (View interaction) KW - Molybdenum cofactor KW - L-cysteine desulfurase KW - Formate dehydrogenase KW - Chaperone KW - bis-MGD Y1 - 2014 U6 - https://doi.org/10.1016/j.febslet.2013.12.033 SN - 0014-5793 SN - 1873-3468 VL - 588 IS - 4 SP - 531 EP - 537 PB - Elsevier CY - Amsterdam ER -