TY - JOUR A1 - Szatmari, Istvan A1 - Heydenreich, Matthias A1 - Koch, Andreas A1 - Fulop, Ferenc A1 - Kleinpeter, Erich T1 - Unexpected isomerization of new naphth[1,3]oxazino[2,3-a] isoquinolines in solution, studied by dynamic NMR and supported by theoretical DFT computations JF - Tetrahedron N2 - Through the reactions of 1-aminomethyl-2-naphthol and substituted 1-aminobenzyl-2-naphthols with 3,4-dihydroisoquinoline or 6,7-dimethoxy-3,4-dihydroisoquinoline under microwave conditions, naphth[1,2-e][1,3]oxazino[2,3-a]-isoquinoline derivatives were prepared in good yields. The latter reaction was extended by using 2-aminoarylmethyl-1-naphthols, leading to isomeric naphth-[2,1-e][1,3]oxazino[2,3-a] isoquinolines. Beside the detailed NMR spectroscopic and theoretical study of both stereochemistry and dynamic behaviour of these new conformational flexible heterocyclic ring systems an unexpected dynamic process between two diastereomers was observed in solution, studied by variable temperature H-1 NMR spectroscopy and the mechanism proved by theoretical DFT computations. KW - 3,4-Dihydroisoquinoline KW - Aminonaphthol KW - Dynamic NMR spectroscopy KW - DFT calculations KW - Conformational analysis Y1 - 2013 U6 - https://doi.org/10.1016/j.tet.2013.06.094 SN - 0040-4020 VL - 69 IS - 35 SP - 7455 EP - 7465 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Demetriou, Antri A1 - Pashalidis, Ioannis A1 - Nicolaides, Athanassios V. A1 - Kumke, Michael Uwe T1 - Surface mechanism of the boron adsorption on alumina in aqueous solutions JF - Desalination and water treatment : science and engineering N2 - The adsorption of boron (boric acid) from aqueous solutions on alumina has been investigated at pH 8.0, I=0.1M NaClO4, T=22 +/- 3 degrees C, and under normal atmospheric conditions. The characterization of the adsorbed species was performed by Raman spectroscopy and the spectroscopic speciation was assisted by theoretical DFT calculations. Evaluation of the spectroscopic data points to the formation of inner-sphere surface complexes and indicates the formation of two different types of adsorbed boron species. The theoretical calculations corroborate the spectroscopic data and indicate that at low boron concentration the monodentate surface species dominates, whereas increased boron concentration favors the formation of a bidentate surface species. Assuming low coverage, the conditional formation constant for the monodentate surface species has been evaluated to be log=4.1 +/- 0.1. KW - Boric acid KW - Alumina KW - Raman spectroscopy KW - DFT calculations KW - Surface complexes KW - Formation constant Y1 - 2013 U6 - https://doi.org/10.1080/19443994.2013.764354 SN - 1944-3994 SN - 1944-3986 VL - 51 IS - 31-33 SP - 6130 EP - 6136 PB - Taylor & Francis Group CY - Philadelphia ER -