TY - JOUR A1 - Cacace, Mauro A1 - Blöcher, Guido A1 - Watanabe, Norihiro A1 - Möck, Inga A1 - Börsing, Nele A1 - Scheck-Wenderoth, Magdalena A1 - Kolditz, Olaf A1 - Hünges, Ernst T1 - Modelling of fractured carbonate reservoirs - outline of a novel technique via a case study from the Molasse Basin, southern Bavaria, Germany JF - Environmental earth sciences N2 - Fluid flow in low-permeable carbonate rocks depends on the density of fractures, their interconnectivity and on the formation of fault damage zones. The present-day stress field influences the aperture hence the transmissivity of fractures whereas paleostress fields are responsible for the formation of faults and fractures. In low-permeable reservoir rocks, fault zones belong to the major targets. Before drilling, an estimate for reservoir productivity of wells drilled into the damage zone of faults is therefore required. Due to limitations in available data, a characterization of such reservoirs usually relies on the use of numerical techniques. The requirements of these mathematical models encompass a full integration of the actual fault geometry, comprising the dimension of the fault damage zone and of the fault core, and the individual population with properties of fault zones in the hanging and foot wall and the host rock. The paper presents both the technical approach to develop such a model and the property definition of heterogeneous fault zones and host rock with respect to the current stress field. The case study describes a deep geothermal reservoir in the western central Molasse Basin in southern Bavaria, Germany. Results from numerical simulations indicate that the well productivity can be enhanced along compressional fault zones if the interconnectivity of fractures is lateral caused by crossing synthetic and antithetic fractures. The model allows a deeper understanding of production tests and reservoir properties of faulted rocks. KW - Fractured carbonate geothermal reservoirs KW - Fault core and damage zone KW - In situ stress field KW - 3D mesh generator KW - OpenGeosys KW - Well productivity Y1 - 2013 U6 - https://doi.org/10.1007/s12665-013-2402-3 SN - 1866-6280 SN - 1866-6299 VL - 70 IS - 8 SP - 3585 EP - 3602 PB - Springer CY - New York ER -