TY - JOUR A1 - Ost, Mario A1 - Igual Gil, Carla A1 - Coleman, Verena A1 - Keipert, Susanne A1 - Efstathiou, Sotirios A1 - Vidic, Veronika A1 - Weyers, Miriam A1 - Klaus, Susanne T1 - Muscle-derived GDF15 drives diurnal anorexia and systemic metabolic remodeling during mitochondrial stress JF - EMBO reports N2 - Mitochondrial dysfunction promotes metabolic stress responses in a cell-autonomous as well as organismal manner. The wasting hormone growth differentiation factor 15 (GDF15) is recognized as a biomarker of mitochondrial disorders, but its pathophysiological function remains elusive. To test the hypothesis that GDF15 is fundamental to the metabolic stress response during mitochondrial dysfunction, we investigated transgenic mice (Ucp1-TG) with compromised muscle-specific mitochondrial OXPHOS capacity via respiratory uncoupling. Ucp1-TG mice show a skeletal muscle-specific induction and diurnal variation of GDF15 as a myokine. Remarkably, genetic loss of GDF15 in Ucp1-TG mice does not affect muscle wasting or transcriptional cell-autonomous stress response but promotes a progressive increase in body fat mass. Furthermore, muscle mitochondrial stress-induced systemic metabolic flexibility, insulin sensitivity, and white adipose tissue browning are fully abolished in the absence of GDF15. Mechanistically, we uncovered a GDF15-dependent daytime-restricted anorexia, whereas GDF15 is unable to suppress food intake at night. Altogether, our evidence suggests a novel diurnal action and key pathophysiological role of mitochondrial stress-induced GDF15 in the regulation of systemic energy metabolism. KW - anorexia KW - GDF15 KW - integrated stress response KW - mitochondrial dysfunction KW - muscle wasting Y1 - 2020 U6 - https://doi.org/10.15252/embr.201948804 SN - 1469-221X SN - 1469-3178 VL - 21 IS - 3 PB - Wiley CY - Hoboken ER -